Introduction
Chain Event Graphs
Model selection for CEGs
Conclusions

Chain Event Graphs for Informative Missingness

Jane Hutton, Lorna Barclay, Jim Smith

University of Warwick

MRC Conference on Biostatistics
Graphical Models

- Chain Event Graphs are a type of graphical model.
- They are derived from probability trees by merging the nodes in a tree whose associated conditional probabilities are the same.
- The use of a graph makes the statistical model more accessible by providing a visual representation of the problem.

\Rightarrow We show that the CEG allows us to draw informative conclusions directly from its graph.
\Rightarrow It can represent missing data structures explicitly.
\Rightarrow It can provide a useful framework for defining categories of variables.
Example: Christchurch Health and Development Study

‘Effect of family and substance use on hospital admission’

- Birth cohort study following up 1265 children born in Christchurch, New Zealand
- Hospital admissions aged 21-25 years, not pregnancy related.

Effect of family type at birth, substance abuse aged 16-18 years on hospital admissions

- $X_2 = \text{Family type at birth: both parents, single, adopted}$
- $X_3 = \text{Substance abuse aged 16-18: none, user, missing}$
- $X_4 = \text{Hospital admission: no admission, at least one admission}$
CEG: Initial tree

- **Parents:**
 - both
 - single
 - adoptive

- **Drug abuse age 16-18:**
 - no
 - user
 - missing

- **Hospital admissions:**
 - none
 - some or missing

Lines have the same colour if they represent the same conditional probability.

Figure: Tree on three variables
Two situations v, v' are in the same **stage** u if and only if
- The topology of their florets $F(v)$ and $F(v')$ are the same
- There is a bijection between the florets such that the probabilities on corresponding edges are the same

Two situations v, v' are in the same **position** w if and only if
- The topology of their subtrees $T(v)$ and $T(v')$ are the same
- There is a bijection between the subtrees such that the probabilities on corresponding edges are the same
CEG: Stages and Positions

- **Stages:**

 \[u_1 = \{ v_1 \}, \quad u_2 = \{ v_2, v_3, v_4 \}, \]
 \[u_3 = \{ v_5, v_7 \}, \quad u_4 = \{ v_6, v_8, v_9 \}, \]
 \[u_5 = \{ v_{10} \} \]

- **Positions:**

 \[w_1 = \{ v_1 \}, \quad w_2 = \{ v_2, v_3 \}, \]
 \[w_3 = \{ v_4 \}, \quad w_4 = \{ v_5, v_7 \}, \]
 \[w_5 = \{ v_6, v_8, v_9 \}, \quad w_6 = \{ v_{10} \} \]
 \[w_\infty = \{ l_1, l_2, l_3, \ldots, l_{10}, l_{11}, l_{12} \} \]

Figure: Tree on three variables

Hutton, Barclay, Smith

CEGs for missing data
Definition of a Chain Event Graph

- The set of vertices is the set of all positions of the tree T and the position of all leaf nodes.
- For each position w choose a single representative situation $v(w)$. We have an edge from w to w' for each edge from $v(w)$ to a vertex $v' \in w'$.
- If $u(w) \neq \{w\}$, there is more than one position in the stage, so we connect two positions by an undirected dotted line.

Figure: Tree on three variables

Hutton, Barclay, Smith

CEGs for missing data
Definition of a Chain Event Graph

w_1 = Root, w_2 = Both or adoptive parents, w_3 = Single parent, w_4 = Both or adoptive parents and no drug abuse, w_5 = (Both or adoptive parents and drug abuse) or (Single parent and no drug abuse), w_6 = Single parent and drug abuse, w_∞ = Sink.

Figure: CEG derived from the tree, T
CEG: Missing data

- Tree on three variables, with missing data
- Percent no admissions to hospital
Definition: Let T be a tree on p variables with a binary outcome variable Y_p represented by the leaf nodes in the tree. A CEG, $C(T)$, is an ordinal CEG with respect to Y_p when the positions in each vertex subset associated with a variable Y_i, V_{Y_i}, are vertically aligned in descending order with respect to the predictive probability $P(Y_p = 0 | D, C(T))$.

Figure: Ordinal CEG when data are MAR

Hutton, Barclay, Smith

CEGs for missing data
Ordinal CEG: Missing completely at random

The positions w_2, w_3 and w_4 are in the same stage.

Figure: Ordinal CEG when data are MCAR
Ordinal CEG: Missing not at random

Figure: Ordinal CEG when data are MNAR
Score of the CEG

- Let Π_u be the set of conditional probabilities associated with the floret $F(u)$
- $\Pi_u \sim \text{Dir}(\alpha_u)$, $\alpha_u = (\alpha_{u1}, \ldots, \alpha_{ur_u})$
- $\Pi_u|D \sim \text{Dir}(\alpha_u + N_u)$, $N_u = (N_{u1}, \ldots, N_{ur_u})$
- Simplest case: uniform prior on the root-to-leaf paths of the associated tree

The score of a CEG structure C given a dataset D is

$$\log L(C|D) = \sum_{u \in J(T)} \left(\log \Gamma(\alpha_u) - \log \Gamma(\alpha_u + N_u) + \sum_{k=1}^{r_u} \{ \log \Gamma(\alpha_{uk} + N_{uk}) - \log \Gamma(\alpha_{uk}) \} \right)$$

We compare two CEG structures using log Bayes factors:

$$\log L(C_1|D) - \log L(C_0|D).$$
Example: Christchurch Health and Development Study

‘Effect of family and substance use on hospital admission’

![CEG diagram]

Figure: CEG for example; % no reported hospital admissions
Conclusions

⇒ The CEG allows us to draw informative conclusions directly from its graph
⇒ It can represent missing data structures explicitly
⇒ It can provide a useful framework for defining categories of variables

Further work:
- Informative priors
- Include more covariates
Ordinal CEG: Conditional Missing not at random

Figure: Ordinal CEG when data are MNAR conditional on birth weight