Analysing recurrent events: a review of statistical methodology and future directions, with application to major trials in heart failure

Jennifer Rogers

Department of Medical Statistics, LSHTM
MRC Clinical Trials Unit at UCL

Medical Research Council Conference on Biostatistics
25 March 2014

Improving health worldwide

www.lshtm.ac.uk
Outline

Motivation
Conventional analyses
Examples

Analysis of Recurrent Events
Standard Methods
Results

Analysis of Recurrent Events II
But what about Informative Censoring...
Results
Motivation

Conventional analyses
Composite Endpoints

- Include two or more types of related clinical events
- Increase event rate and avoid multiplicity
- Examples in cardiovascular trials:
 - CV death, MI and stroke in hypertension trials
 - CV death and HF hospitalisation in heart failure trials
What is wrong with Composite Endpoints?

Only first hospitalisation is analysed, repeats are ignored

- Heart failure characterised by repeat hospitalisations
- Distressing for patients and caregivers
- Major driver of enormous cost
- Analysing all hospitalisations evaluates the effect of treatment on true burden of disease
Motivation

Examples
EMPHASIS-HF (Zannad et al NEJM 2011)

- Compared eplerenone vs. placebo in 2737 patients with mild HF
- Primary endpoint composite of HF hospitalisation and CV death

<table>
<thead>
<tr>
<th>HF Hospitalisations</th>
<th>Eplerenone (N=1364)</th>
<th>Placebo (N=1373)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 Admissions</td>
<td>186</td>
<td>277</td>
</tr>
<tr>
<td>≥ 2 Admissions</td>
<td>67</td>
<td>110</td>
</tr>
<tr>
<td>All admissions</td>
<td>312</td>
<td>481</td>
</tr>
<tr>
<td>‘Unused’ admissions</td>
<td>126</td>
<td>204</td>
</tr>
</tbody>
</table>
CHARM-Preserved (Yusuf et al The Lancet 2003)

- Component arm of CHARM, EF ≥ 40% trial
- Compared candesartan vs. placebo in 3021 patients
- Primary endpoint composite of HF hospitalisation and CV death

<table>
<thead>
<tr>
<th>HF Hospitalisations</th>
<th>Candesartan (N=1513)</th>
<th>Placebo (N=1508)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1 Admissions</td>
<td>229</td>
<td>278</td>
</tr>
<tr>
<td>≥ 2 Admissions</td>
<td>94</td>
<td>114</td>
</tr>
<tr>
<td>All admissions</td>
<td>390</td>
<td>547</td>
</tr>
<tr>
<td>‘Unused’ admissions</td>
<td>161</td>
<td>269</td>
</tr>
</tbody>
</table>
Analysis of Recurrent Events

Standard Methods
Poisson

- Commonly used for event rates
- Simple: total number of events divided by total follow-up in each group
- Gives a rate ratio for recurrent events
- Assumes that all events are independent
Andersen-Gill

- Extension of Cox proportional-hazards model
- Analyses gap times
- Each gap time contributes to the likelihood
- Gives a hazard ratio for recurrent events
- Assumes that events are independent
- Robust standard errors accommodates heterogeneity
Negative Binomial

- Events within an individual related - naturally accommodated by NB
- Each individual has their own individual Poisson hospitalisation rate
- Poisson rates vary according to Gamma
- Straightforward to implement
- Does not require complex data files
Analysis of Recurrent Events

Results
<table>
<thead>
<tr>
<th>Model</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite</td>
<td>0.69</td>
<td>(0.59, 0.81)</td>
<td><0.001</td>
</tr>
<tr>
<td>Poisson</td>
<td>0.63</td>
<td>(0.55, 0.73)</td>
<td><0.001</td>
</tr>
<tr>
<td>Negative binomial</td>
<td>0.53</td>
<td>(0.42, 0.66)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Estimate</td>
<td>95% CI</td>
<td>p-value</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Adjudicated composite</td>
<td>0.89</td>
<td>(0.77,1.03)</td>
<td>0.118</td>
</tr>
<tr>
<td>Unadjudicated composite</td>
<td>0.86</td>
<td>(0.74,1.00)</td>
<td>0.050</td>
</tr>
<tr>
<td>Poisson</td>
<td>0.71</td>
<td>(0.62,0.81)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Negative binomial</td>
<td>0.68</td>
<td>(0.54,0.85)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Andersen-Gill</td>
<td>0.71</td>
<td>(0.57,0.88)</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Bootstrap Simulation of Power

Sample Size

Statistical Power

- Negative Binomial for HFH
- Unadjudicated Composite
- Adjudicated Composite
Analysis of Recurrent Events II

But what about Informative Censoring...
Incorporating Time to CV Death

- Increase in HF hospitalisations \Rightarrow increased risk of death
- Censoring due to CV death not independent
- Comparison of hospitalisation rates confounded

Informative censoring must be incorporated into analysis
Composite of Repeat HFHs and CV Death

Treat CV death as an additional event

- CV death treated in same way as a HF hospitalisation
- Andersen-Gill, Poisson, negative binomial
- Rate ratio for composite of HF hospitalisation and CV death
- Death that occurs during HF hospitalisation treated as single event
Joint Frailty Model

Joint modelling strategies simultaneously analyse event rates and death

- Each patient has their own independent frailty term ν_i
- Proportionately affects heart failure hospitalisation rate Y_i and time to death T_i
- Integrate out random effects to jointly model Y and T

$$f_{Y,T}(y_i, t_i) = \int f_{Y|\nu}(y_i | \nu_i) f_{T|\nu}(t_i | \nu_i) f_{\nu}(\nu_i) d\nu_i$$
Poisson Parameterisation

- Poisson distribution for heart failure hospitalisations, with random effect
- Exponential distribution for time to death, with random effect
- Gamma distribution for random effect, so that:
 - Unconditional distribution for Y_i is Negative Binomial
 - Unconditional distribution for T_i is Lomax

Random effects proportionally affects hospitalisation rate and time to death in same way
Analysis of Recurrent Events II

Results
Composite of Recurrent HFHs and CV Death

<table>
<thead>
<tr>
<th>Model</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>0.78</td>
<td>(0.69, 0.87)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Negative binomial</td>
<td>0.75</td>
<td>(0.62, 0.91)</td>
<td>0.003</td>
</tr>
<tr>
<td>Andersen-Gill</td>
<td>0.78</td>
<td>(0.65, 0.93)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Note that there were 170 CV deaths in each group.
Joint Frailty Model

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate ratio</td>
<td>0.69</td>
<td>(0.55, 0.85)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.96</td>
<td>(0.73, 1.26)</td>
<td>0.769</td>
</tr>
</tbody>
</table>

Marginal analysis of CV death: 0.99 (95% CI 0.80-1.22, p=0.918)
Summary

- Composite endpoints are frequently used in clinical trials
- Recurrent events within individuals are ignored
- Uncertainty as to how to do this statistically
- LWYY, WLW

- Increase in HF hospitalisations associated with an increased risk of death
- Joint modelling strategies account for competing risk of death
Summary

- **CHAMPION (Wireless Implantable Haemodynamic Monitoring system)**
 - Rate of HF hospitalisations in 6 months - NB
 - Rate of HF hospitalisations - A-G

- **PARAGON-HF (Valsartan)**
 - Cumulative number of HF hospitalisations and CV death

- **COAPT (MitraClip)**
 - HF hospitalisations
References

