skip to primary navigation skip to content
Loading Events

« All Events

  • This event has passed.

BSU Seminar Series: “Using sparsity to overcome unmeasured confounding: Two examples”

October 15, 2019 @ 2:00 pm - 3:00 pm

Speaker: Qingyuan Zhao, University of Cambridge

Title: Using sparsity to overcome unmeasured confounding: Two examples

Abstract: Sparsity is often used to improve the interpretability of a statistical analysis and/or reduce the variance of a statistical estimator. This talk will explore another aspect—the utility of sparsity in model identifiability through two problems motivated by genetics applications.

The first problem is about removing “batch effects” or latent confounders in multiple hypothesis testing. I will present a general framework called Confounder Adjusted Testing and Estimation (CATE) we proposed to unify several widely used but ad hoc proposals. If the latent confounders are strong enough and the signals are sparse enough, CATE can be as powerful as the oracle estimator which observes the latent confounders. The second problem is about tackling invalid instrumental variables in Mendelian randomization. I will describe a new statistical framework called Robust Adjusted Profile Score (MR-RAPS) which can provide efficient and robust inference in such problems, by exploiting weak genetic instruments and limiting the importance of invalid instruments. Finally, connections to related work and potential future work will be discussed.

Details

Date:
October 15, 2019
Time:
2:00 pm - 3:00 pm
Event Categories:
,

Organiser

MRC Biostatistics Unit
Email
research_admin@mrc-bsu.cam.ac.uk

Venue

Large Seminar Room, IPH
Institute of Public Health, Forvie Site
Cambridge, CB2 0SR United Kingdom
+ Google Map
View Venue Website