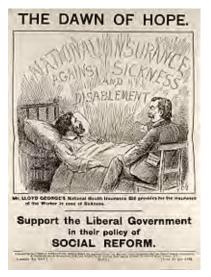
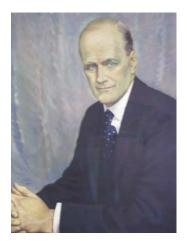

A Century (Almost) of the MRC Biostatistics Unit: Some History

Vern Farewell

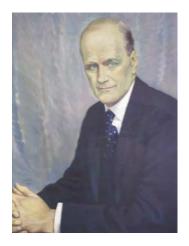

Medical Research Council Biostatistics Unit, UK

October 12, 2011

 Sir Robert Morant chaired implementation of the National Insurance Act of 1911



- Sir Robert Morant chaired implementation of the National Insurance Act of 1911
- As part of this, established a Medical Research Fund



- Sir Robert Morant chaired implementation of the National Insurance Act of 1911
- As part of this, established a Medical Research Fund
- Medical Research Committee set up in 1913 to administer the fund

Sir Walter Fletcher

Sir Walter Fletcher

- Elected Fellow of Royal Society for work on biochemistry of muscle contraction.
- Appointed First Secretary (Head) of Medical Research Committee.
- In post for 20 years.
- Oversaw transition to Medical Research Council (MRC) set up by Royal Charter in 1920 and guaranteed independence from any government department.

■ Type of Research: extension of medical knowledge – the actual field of research is not limited

- Type of Research: extension of medical knowledge the actual field of research is not limited
- Method of Conducting the Research:

- Type of Research: extension of medical knowledge the actual field of research is not limited
- Method of Conducting the Research:
 - investigators of highest class in permanent employ of scheme, devoting whole time to research

- Type of Research: extension of medical knowledge the actual field of research is not limited
- Method of Conducting the Research:
 - investigators of highest class in permanent employ of scheme, devoting whole time to research
 - 2 skilled investigators in permanent or temporary employ of scheme engaged in procuring material clinically or otherwise

- Type of Research: extension of medical knowledge the actual field of research is not limited
- Method of Conducting the Research:
 - investigators of highest class in permanent employ of scheme, devoting whole time to research
 - 2 skilled investigators in permanent or temporary employ of scheme engaged in procuring material clinically or otherwise
 - Individual investigators not in employ of scheme helped with money or otherwise for researches coordinated with research under the scheme

- Type of Research: extension of medical knowledge the actual field of research is not limited
- Method of Conducting the Research:
 - investigators of highest class in permanent employ of scheme, devoting whole time to research
 - 2 skilled investigators in permanent or temporary employ of scheme engaged in procuring material clinically or otherwise
 - Individual investigators not in employ of scheme helped with money or otherwise for researches coordinated with research under the scheme
 - 4 Statistical Department: mainly consist of persons in the permanent employment of the scheme — statistical investigations useful either as a preliminary to research or confirmatory of its results.

John Brownlee

John Brownlee

- Studied mathematics, natural philosophy and medicine in Glasgow, then public health in Cambridge
- Appointed Director of MRC's 'Statistical Department' in 1914
- Administrative principle: 'never (or hardly ever) reply to letters'
- Died suddenly from bronchopneumonia in 1927.
- papers on tuberculosis (phthisis) and periodicity of epidemics (measles)

Major Greenwood

MAJOR GREENWOOD

London School of Hygiene and Tropical Medicine Libras

Major Greenwood

MAJOR GREENWOOD

London School of Hygiene and Tropical Medicine Librar

- Studied medicine, soon turned to research
- Appointed resident statistician in Lister Institute
- After war work, became senior statistical officer at Ministry of Health
- Chaired MRC 'Statistical Committee' from 1921

A Century (Almost) of the MRC Biostatistics Unit: Some History

21

say, thus not make at more, or how, likely that there will be an error in p_i , way. If thus in so, and if by he come error of a p_i we have:— $E_i(t) = E_i(p_i) \times E_i(p_{i+1}), \dots, E_i(p_{i-i+1})$

 $Y^q = F_q \times p_{r+1}, \dots, p_{r+1}$ $\triangle \; \mathbb{E} \left(P^{i} \right) = \mathbb{E} \left(p^{i}_{i} \right) \; \mathbb{E} \left(p^{i}_{i+1} \right) \; \dots \; \mathbb{E} \left(p^{i}_{i+s-1} \right)$ $=\mathbb{E}\left(P-\mathbb{E}\left(P\right)\right)^{t}=\mathbb{E}\left(P\right)^{r}-\left(\mathbb{E}\left(P\right)\right)^{r}$

 $=\mathbb{E}\left(p_{i}^{*}\right)\mathbb{E}\left(p_{i+1}^{*}\right)\ldots-\left[\mathbb{E}\left(p_{i}\right),\,\mathbb{E}\left(p_{i+1}\right)\ldots\right]^{*}$ Now $F_{\rm cl}$ may, $= E\left(\rho_{\rm c}\right)+\Delta \nu_{\rm c}$

 $\cap \to \mathbb{E}\left(P^{1}_{i}\right) = \mathbb{E}\left\{\mathbb{E}\left(p_{i}\right) : \Delta_{p_{i}}\right\}$ $\mathbb{E}\left(\mathbb{E}\left(\rho_{i}\right)^{p}+\mathbb{E}\left(\Delta_{P_{i}}\right)\right)\otimes\mathbb{E}\left(\Delta_{P_{i}}\right)\gg0$

which is true if the errors are independent. Write E $\{\Delta_p\}^p = a_{p}$

substitute in (3) and we have

$$\begin{split} & \left[E\left(\mathbf{p}_{i} \right) , \quad \sigma \left[\mathbf{p}_{i} \right] \left[E\left(\mathbf{p}_{i+1} \right) \right] + \sigma^{2} p_{i+1} \right] \\ & = \left[E\left(\mathbf{p}_{i} \right) , \quad E\left(\mathbf{p}_{i+1} \right) \right]^{2} \\ \end{split}$$

$$\begin{aligned} & & \text{election in } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left(\frac{\partial \mathcal{L}}{\partial x} \right)^{2} + \frac{\partial \mathcal{L}}{\partial x} \right] & \text{election } \left[\left($$

$$\frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t} \frac$$

Now of p_{i+1} is known if $E_i\left(p_{i+1}\right)$ is known, and the number of discretations, $n_{p_{1,p}}$ to which $p_{2,p_{1}}$ is applied, at is $\frac{\mathbb{E}\left(p_{1,p_{2}}\right)}{\mathbb{E}\left(p_{2,p_{2}}\right)}\left[1-\mathbb{E}\left(p_{2,p_{2}}\right)\right]$

If the κ 's are delity by g_{κ} then since E, p_{r+s} is m attails I terms) is act greater than unity, (a) terms having factors of higher order in m_{r+s} is the demonstrators may be neglected, and (4) becomes:

$$\left\{P_{i}\left(p_{j}\right)^{2}, \frac{\int_{i}^{q_{i}} p_{j}}{\left[\frac{2\pi}{2} p_{j}\right]^{2}} + \frac{\sigma^{q}}{\left(p_{j}\right)^{2}} + \cdots + \frac{\sigma^{q}}{\left(p_{j}\right)^{2}} + \cdots + \frac{\sigma^{q}}{\left(p_{j}\right)^{2}}\right\}$$
(a)

(4) or for a of under 50 or harm, (5), is the complete formal solution of any problem, i.e., it gives us the abundant distribution (the tipcate tout of \$6) of sampling, supposing the parking a transfer of the second o Manjating, Supposing one per Associa. In sect, we novel only a sangua, we know that, for instance, m_{per} used alim at the legislating of the e² intensal, and half a change of dying through that interest, of these of actually died. and we make pair $p_{ij} = \frac{d_{i+1} - d_{i}}{2}$

That is we replace the methematical aspectation (if p.) by the completed result $\frac{d_{n-1}-d_n}{d_n}$. This is clearly only an approximation (reft expost).

Their Copyright Reserved

REPORTS

PUBLIC HEALTH AND MEDICAL SUBJECTS

No. 33

A REPORT

The Natural Duration of Cancer

Ps MAJOR GREENWOOD, F.R.C.P.

MINISTRY OF HEALTH

LONDON:
PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE.

Price of Not.

Austin Bradford Hill

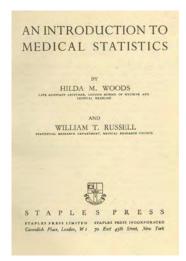
Austin Bradford Hill

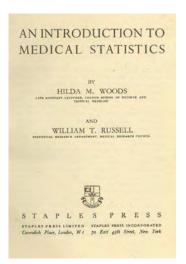
- Wanted to study medicine but prevented by WWI
- invalided out in 1919, took correspondence degree in economics
- Greenwood helped him to get MRC funding to examine high mortality in young adults in rural areas
- Attended Karl Pearson's lectures at UCI
- Succeeded Greenwood in 1945: name change to Statisical Research Unit in 1948

PRINCIPLES OF MEDICAL STATISTICS

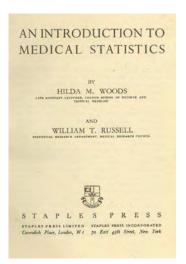
PRINCIPLES OF MEDICAL STATISTICS

- Based on a series of Lancet articles
- Some reluctance to publish
- 14 Editions

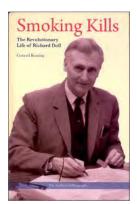




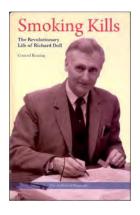
■ Hilda Mary Woods



- Hilda Mary Woods
- Farewell, Johnson and Gear, Hilda Mary Woods MBE, DSc, LRAM, FSS (1892- 1971): Reflections on a RSS Fellow, JRSS(A), to appear



Published 1931, 2nd edition 1936



- Published 1931, 2nd edition 1936
- Farewell and Johnson, Woods and Russell, Hill and the Emergence of Medical Statistics, Stat in Med, 2010

Richard Doll

Richard Doll

- Medically trained but interested in mathematics. Read Fisher's Statistical Methods for Research Workers.
- 1937 article for *St. Thomas's Hospital Gazette*.
 - "Were physicians to abide more strictly to the rules of statistics they would find it very much easier to assess the values of their methods of treatment."
- Most honoured for work with Hill on smoking and cancer.

■ Ian Sutherland: 1970-1986

■ Ian Sutherland: 1970-1986

■ Nick Day: 1986-1999

■ Ian Sutherland: 1970-1986

■ Nick Day: 1986-1999

■ Simon Thompson: 2000-2011

BSU publications - The First Quarter Century

BSU publications - The Second Quarter Century

BSU publications - The Third Quarter Century

