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Prior distributions

The prior distribution plays a defining role in Bayesian analysis. In view of
the controversy surrounding its use it may be tempting to treat it almost as
an embarrassment and to emphasise its lack of importance in particular appli-
cations, but we feel it is a vital ingredient and needs to be squarely addressed.
In this chapter we introduce basic ideas by focusing on single parameters, and
in subsequent chapters consider multi-parameter situations and hierarchical
models. Our emphasis is on understanding what is being used and being aware
of its (possibly unintentional) influence.

5.1 Different purposes of priors

A basic division can be made between so-called “non-informative” (also known
as “reference” or “objective”) and “informative” priors. The former are in-
tended for use in situations where scientific objectivity is at a premium, for
example, when presenting results to a regulator or in a scientific journal, and
essentially means the Bayesian apparatus is being used as a convenient way of
dealing with complex multi-dimensional models. The term “non-informative”
is misleading, since all priors contain some information, so such priors are
generally better referred to as “vague” or “diffuse.” In contrast, the use of in-
formative prior distributions explicitly acknowledges that the analysis is based
on more than the immediate data in hand whose relevance to the parameters
of interest is modelled through the likelihood, and also includes a considered
judgement concerning plausible values of the parameters based on external
information.

In fact the division between these two options is not so clear-cut — in par-
ticular, we would claim that any “objective” Bayesian analysis is a lot more
“subjective” than it may wish to appear. First, any statistical model (Bayesian
or otherwise) requires qualitative judgement in selecting its structure and dis-
tributional assumptions, regardless of whether informative prior distributions
are adopted. Second, except in rather simple situations there may not be an
agreed “objective” prior, and apparently innocuous assumptions can strongly
influence conclusions in some circumstances.

In fact a combined strategy is often reasonable, distinguishing parameters of

81



82 The BUGS Book

primary interest from those which specify secondary structure for the model.
The former will generally be location parameters, such as regression coef-
ficients, and in many cases a vague prior that is locally uniform over the
region supported by the likelihood will be reasonable. Secondary aspects of
a model include, say, the variability between random effects in a hierarchical
model. Often there is limited evidence in the immediate data concerning such
parameters and hence there can be considerable sensitivity to the prior dis-
tribution, in which case we recommend thinking carefully about reasonable
values in advance and so specifying fairly informative priors — the inclusion
of such external information is unlikely to bias the main estimates arising
from a study, although it may have some influence on the precision of the
estimates and this needs to be carefully explored through sensitivity analysis.
It is preferable to construct a prior distribution on a scale on which one has
has a good interpretation of magnitude, such as standard deviation, rather
than one which may be convenient for mathematical purposes but is fairly
incomprehensible, such as the logarithm of the precision. The crucial aspect
is not necessarily to avoid an influential prior, but to be aware of the extent
of the influence.

5.2 Vague, “objective,” and “reference” priors

5.2.1 Introduction

The appropriate specification of priors that contain minimal information is
an old problem in Bayesian statistics: the terms “objective” and “reference”
are more recent and reflect the aim of producing a baseline analysis from
which one might possibly measure the impact of adopting more informative
priors. Here we illustrate how to implement standard suggestions with BUGS.
Using the structure of graphical models, the issue becomes one of specifying
appropriate distributions on “founder” nodes (those with no parents) in the
graph.

We shall see that some of the classic proposals lead to “improper” priors
that do not form distributions that integrate to 1: for example, a uniform
distribution over the whole real line, no matter how small the ordinate, will
still have an infinite integral. In many circumstances this is not a problem, as
an improper prior can still lead to a proper posterior distribution. BUGS in
general requires that a full probability model is defined and hence forces all
prior distributions to be proper — the only exception to this is the dflat()

distribution (Appendix C.1). However, many of the prior distributions used
are “only just proper” and so caution is still required to ensure the prior is
not having unintended influence.
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5.2.2 Discrete uniform distributions

For discrete parameters it is natural to adopt a discrete uniform prior distri-
bution as a reference assumption. We have already seen this applied to the
degrees of freedom of a t-distribution in Example 4.1.2, and in §9.8 we will
see how it can be used to perform a non-Bayesian bootstrap analysis within
BUGS.

5.2.3 Continuous uniform distributions and Jeffreys prior

When it comes to continuous parameters, it is tempting to automatically
adopt a uniform distribution on a suitable range. However, caution is required
since a uniform distribution for θ does not generally imply a uniform distri-
bution for functions of θ. For example, suppose a coin is known to be biased,
but you claim to have “no idea” about the chance θ of it coming down heads
and so you give θ a uniform distribution between 0 and 1. But what about the
chance (θ2) of it coming down heads in both of the next two throws? You have
“no idea” about that either, but according to your initial uniform distribution
on θ, ψ = θ2 has a density p(ψ) = 1/(2

√
ψ), which can be recognised to be a

Beta(0.5, 1) distribution and is certainly not uniform.
Harold Jeffreys came up with a proposal for prior distributions which would

be invariant to such transformations, in the sense that a “Jeffreys” prior for θ
would be formally compatible with a Jeffreys prior for any 1–1 transformation
ψ = f(θ). He proposed defining a “minimally informative” prior for θ as

pJ(θ) ∝ I(θ)1/2 where I(θ) = −E[ d2

dθ2 log p(Y |θ)] is the Fisher information for
θ (§3.6.1). Since we can also express I(θ) as

I(θ) = EY |θ

[

(

d log p(Y |θ)
dθ

)2
]

,
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Jeffreys’ prior is therefore invariant to reparameterisation since

I(ψ)1/2 = I(θ)1/2
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and the Jacobian terms cancel when transforming variables via the expression
in §2.4. Hence, a Jeffreys prior for θ transforms to a Jeffreys prior for any 1–1
function ψ(θ).

As an informal justification, Fisher information measures the curvature of
the log-likelihood, and high curvature occurs wherever small changes in pa-
rameter values are associated with large changes in the likelihood: Jeffreys’
prior gives more weight to these parameter values and so ensures that the
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influence of the data and the prior essentially coincide. We shall see examples
of Jeffreys priors in future sections.

Finally, we emphasise that if the specific form of vague prior is influential
in the analysis, this strongly suggests you have insufficient data to draw a
robust conclusion based on the data alone and that you should not be trying
to be “non-informative” in the first place.

5.2.4 Location parameters

A location parameter θ is defined as a parameter for which p(y|θ) is a func-
tion of y − θ, and so the distribution of y − θ is independent of θ. In this
case Fisher’s information is constant, and so the Jeffreys procedure leads to
a uniform prior which will extend over the whole real line and hence be im-
proper. In BUGS we could use dflat() to represent this distribution, but tend
to use proper distributions with a large variance, such as dunif(-100,100)
or dnorm(0,0.0001): we recommend the former with appropriately chosen
limits, since explicit introduction of these limits reminds us to be wary of
their potential influence. We shall see many examples of this use, for example,
for regression coefficients, and it is always useful to check that the posterior
distribution is well away from the prior limits.

5.2.5 Proportions

The appropriate prior distribution for the parameter θ of a Bernoulli or bi-
nomial distribution is one of the oldest problems in statistics, and here we
illustrate a number of options. First, both Bayes (1763) and Laplace (1774)
suggest using a uniform prior, which is equivalent to Beta(1, 1). A major at-
traction of this assumption, also known as the Principle of Insufficient Reason,
is that it leads to a discrete uniform distribution for the predicted number y
of successes in n future trials, so that p(y) = 1/(n+ 1), y = 0, 1, ..., n,∗ which
seems rather a reasonable consequence of “not knowing” the chance of success.
On the φ = logit(θ) scale, this corresponds to a standard logistic distribution,
represented as dlogis(0,1) in BUGS (see code below).

Second, an (improper) uniform prior on φ is formally equivalent to the
(improper) Beta(0, 0) distribution on the θ scale, i.e., p(θ) ∝ θ−1(1 − θ)−1:
the code below illustrates the effect of bounding the range for φ and hence
making these distributions proper. Third, the Jeffreys principle leads to a
Beta(0.5, 0.5) distribution, so that pJ(θ) = π−1θ

1

2 (1 − θ)
1

2 . Since it is com-
mon to use normal prior distributions when working on a logit scale, it is of
interest to consider what normal distributions on φ lead to a “near-uniform”

∗See Table 3.1 — the posterior predictive distribution for a binomial observation and beta

prior is a beta-binomial distribution. With no observed data, n = y = 0 in Table 3.1, this

posterior predictive distribution becomes the prior predictive distribution, which reduces

to the discrete uniform for a = b = 1.
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distribution on θ. Here we consider two possibilities: assuming a prior variance
of 2 for φ can be shown to give a density for θ that is “flat” at θ = 0.5, while
a normal with variance 2.71 gives a close approximation to a standard logistic
distribution, as we saw in Example 4.1.1.

theta[1] ~ dunif(0,1) # uniform on theta

phi[1] ~ dlogis(0,1)

phi[2] ~ dunif(-5,5) # uniform on logit(theta)

logit(theta[2]) <- phi[2]

theta[3] ~ dbeta(0.5,0.5) # Jeffreys on theta

phi[3] <- logit(theta[3])

phi[4] ~ dnorm(0,0.5) # var=2, flat at theta = 0.5

logit(theta[4]) <- phi[4]

phi[5] ~ dnorm(0,0.368) # var=2.71, approx. logistic

logit(theta[5]) <- phi[5]

We see from Figure 5.1 that the first three options produce apparently very
different distributions for θ, although in fact they differ at most by a single
implicit success and failure (§5.3.1). The normal prior on the logit scale with
variance 2 seems to penalise extreme values of θ, while that with variance 2.71
seems somewhat more reasonable. We conclude that, in situations with very
limited information, priors on the logit scale could reasonably be restricted to
have variance of around 2.7.

Example 5.2.1. Surgery (continued): prior sensitivity
What is the sensitivity to the above prior distributions for the mortality rate in our
“Surgery” example (Example 3.3.2)? Suppose in one case we observe 0/10 deaths
(Figure 5.2, left panel) and in another, 10/100 deaths (Figure 5.2, right panel).
For 0/10 deaths, priors 2 and 3 pull the estimate towards 0, but the sensitivity is
much reduced with the greater number of observations.

5.2.6 Counts and rates

For a Poisson distribution with mean θ, the Fisher information is I(θ) = 1/θ

and so the Jeffreys prior is the improper pJ (θ) ∝ θ−
1

2 , which can be approxi-
mated in BUGS by a dgamma(0.5, 0.00001) distribution. The same prior is
appropriate if θ is a rate parameter per unit time, so that Y ∼ Poisson(θt).



86 The BUGS Book

theta[1]: uniform
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theta[2]: ~beta(0,0)
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theta[3]: Jeffreys = beta(0.5,0.5)
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theta[5]: logit-normal
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FIGURE 5.1

Empirical distributions (based on 100,000 samples) corresponding to various
different priors for a proportion parameter.
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FIGURE 5.2

Box plots comparing posterior distributions arising from the five priors dis-
cussed above for mortality rate: (a) 0/10 deaths observed; (b) 10/100 deaths
observed.

5.2.7 Scale parameters

Suppose σ is a scale parameter, in the sense that p(y|σ) = σ−1f(y/σ) for
some function f , so that the distribution of Y/σ does not depend on σ. Then
it can be shown that the Jeffreys prior is pJ(σ) ∝ σ−1, which in turn means
that pJ(σ

k) ∝ σ−k, for any choice of power k. Thus for the normal distribu-
tion, parameterised in BUGS in terms of the precision τ = 1/σ2, we would
have pJ(τ) ∝ τ−1. This prior could be approximated in BUGS by, say, a
dgamma(0.001,0.001), which also can be considered an “inverse-gamma dis-
tribution” on the variance σ2. Alternatively, we note that the Jeffreys prior
is equivalent to pJ(log σ

k) ∝ const, i.e., an improper uniform prior. Hence it
may be preferable to give log σk a uniform prior on a suitable range, for exam-
ple, log.tau ~ dunif(-10, 10) for the logarithm of a normal precision. We
would usually want the bounds for the uniform distribution to have negligible
influence on the conclusions.

We note some potential conflict in our advice on priors for scale parameters:
a uniform prior on log σ follows Jeffreys’ rule but a uniform on σ is placing
a prior on an interpretable scale. There usually would be negligible difference
between the two — if there is a noticeable difference, then there is clearly
little information in the likelihood about σ and we would recommend a weakly
informative prior on the σ scale.

Note that the advice here applies only to scale parameters governing the
variance or precision of observable quantities. The choice of prior for the vari-
ance of random effects in a hierarchical model is more problematic — we
discuss this in §10.2.3.
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5.2.8 Distributions on the positive integers

Jeffreys (1939) [p. 238] suggested that a suitable prior for a parameter N ,
where N = 0, 1, 2, ..., is p(N) ∝ 1/N , analogously to a scale parameter.

Example 5.2.2. Coin tossing: estimating number of tosses
Suppose we are told that a fair coin has come up heads y = 10 times. How many
times has the coin been tossed? Denoting this unknown quantity by N we can
write down the likelihood as

p(y|N) = Binomial(0.5, N) ∝ N !

(N − y)!
0.5N .

As N is integer-valued we must specify a discrete prior distribution.
Suppose we take Jeffreys’ suggestion and assign a prior p(N) ∝ 1/N , which is

improper but could be curtailed at a very high value. Then the posterior distribu-
tion is

p(N |y) ∝ N !

(N − y)!
0.5N/N ∝ (N − 1)!

(N − y)!
0.5N , N ≥ y,

which we can recognise as the kernel of a negative binomial distribution with mean
2y = 20. This has an intuitive attraction, since if instead we had fixed y = 10 in
advance and flipped a coin until we had y heads, then the sampling distribution
for the random quantity N would be just this negative binomial. However, it is
notable that we were not told that this was the design — we have no idea whether
the final flip was a head or not.

Alternatively, we may wish to assign a uniform prior over integer values from
1 to 100, i.e., Pr(N = n) = 1/100, n = 1, ..., 100. Then the posterior for N is
proportional to the likelihood, and its expectation, for example, is given by

E[N |y] =
100
∑

n=1

nPr(N = n|y) = A

100
∑

n=1

n× n!

(n− y)!
0.5n, (5.1)

where A is the posterior normalising constant. The right-hand side of (5.1) cannot
be simplified analytically and so is cumbersome to evaluate (although this is
quite straightforward with a little programming). In BUGS we simply specify the
likelihood and the prior as shown below.

y <- 10

y ~ dbin(0.5, N)

N ~ dcat(p[])

for (i in 1:100) {p[i] <- 1/100}

BUGS can use the resulting samples to summarise the posterior graphically as
well as numerically. Numeric summaries, such as the one shown below, allow us
to make formal inferences; for example, we can be 95% certain that the coin has
been tossed between 13 and 32 times. Graphical summaries, on the other hand,
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N sample: 100000
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FIGURE 5.3

Approximate posterior distribution for number of (unbiased) coin tosses leading
to ten heads.

might reveal interesting features of the posterior. Figure 5.3 shows the posterior
density for N . Note that the mode is 20, which is the intuitive answer, as well
as being the MLE and the posterior mean using the Jeffreys prior. Note also that
although the uniform prior supports values in {1, ..., 9}, which are impossible in
light of the observed data (10 heads), the posterior probability for these values
is, appropriately, zero.

node mean sd MC error 2.5% median 97.5% start sample

N 21.01 4.702 0.01445 13.0 20.0 32.0 1 100000

In Example 5.5.2 we consider a further example of a prior over the positive
integers which reveals the care that can be required.

5.2.9 More complex situations

Jeffreys’ principle does not extend easily to multi-parameter situations, and
additional context-specific considerations generally need to be applied, such
as assuming prior independence between location and scale parameters and
using the Jeffreys prior for each, or specifying an ordering of parameters into
groups of decreasing interest.

5.3 Representation of informative priors

Informative prior distributions can be based on pure judgement, a mixture of
data and judgement, or data alone. Of course, even the selection of relevant
data involves a substantial degree of judgement, and so the specification of an
informative prior distribution is never an automatic procedure.
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We summarise some basic techniques below, emphasising the mapping of
relevant data and judgement onto appropriate parametric forms, ideally rep-
resenting “implicit” data.

5.3.1 Elicitation of pure judgement

Elicitation of subjective probability distributions is not a straightforward task
due to a number of potential biases that have been identified. O’Hagan et al.
(2006) provide some “Guidance for best practice,” emphasising that proba-
bility assessments are constructed by the questioning technique, rather than
being “pre-formed quantifications of pre-analysed belief” (p. 217). They say it
is best to interview subjects face-to-face, with feedback and continual checking
for biases, conducting sensitivity analysis to the consequence of the analysis,
and avoiding verbal descriptions of uncertainty. They recommend eliciting in-
tervals with moderate rather than high probability content, say by focusing
on 33% and 67% quantiles: indeed one can simply ask for an interval and
afterwards elicit a ‘confidence’ in that assessment (Kynn, 2005). They suggest
using multiple experts and reporting a simple average, but it is also important
to acknowledge imperfections in the process, and that even genuine “exper-
tise” cannot guarantee a suitable subject. See also Kadane and Wolfson (1998)
for elicitation techniques for specific models.

In principle any parametric distribution can be elicited and used in BUGS.
However, it can be advantageous to use conjugate forms since, as we have seen
in Chapter 3, the prior distribution can then be interpreted as representing
“implicit data,” in the sense of a prior estimate of the parameter and an
“effective prior sample size.” It might even then be possible to include the
prior information as “data” and use standard classical methods (and software)
for statistical analysis.

Below we provide a brief summary of situations: in each case the “im-
plicit data” might be directly elicited, or measures of central tendency and
spread requested and an appropriate distribution fitted. A simple moment-
based method is to ask directly for the mean and standard deviation, or elicit
an approximate 67% interval (i.e., the parameter is assessed to be twice as
likely to be inside the interval as outside it) and then treat the interval as
representing the mean ± 1 standard deviation, and solve for the parameters
of the prior distribution. In any case it is good practice to iterate between
alternative representations of the prior distribution, say as a drawn distribu-
tion, percentiles, moments, and interpretation as “implicit data,” in order to
check the subject is happy with the implications of their assessments.

• Binomial proportion θ. Suppose our prior information is equivalent to
having observed y events in a sample size of n, and we wanted to derive a
corresponding Beta(a, b) prior for θ. Combining an improper Beta(0,0)
“pre-prior” with these implicit data gives a conjugate “posterior” of
Beta(y, n − y), which we can interpret as our elicited prior. The mean
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of this elicited prior is a/(a+ b) = y/n, the intuitive point estimate for
θ, and the implicit sample size is a+ b = n. Using a uniform “pre-prior”
instead of the Beta(0,0) gives a = y + 1 and b = n− y + 1.

Alternatively, a moment-based method might proceed by eliciting a prior
standard deviation as opposed to a prior sample size, and by then solving
the mean and variance formulae (Appendix C.3) for a and b: a = mb/(1−
m), b = m(1−m)2/v+m− 1, for an elicited mean m = θ̂ and variance
v.

• Poisson rate θ: if we assume θ has a Gamma(a, b) distribution we can

again elicit a prior estimate θ̂ = a/b and an effective sample size of b,
assuming a Gamma(0,0) pre-prior (see Table 3.1, Poisson-gamma con-
jugacy), or we can use a moment-based method instead.

• Normal mean µ: a normal distribution can be obtained be eliciting a
mean γ and standard deviation ω directly or via an interval. By con-
ditioning on a sampling variance σ2, we can calculate an effective prior
sample size n0 = σ2/ω2 which can be fed back to the subject.

• Normal variance σ2: τ = σ−2 may be assumed to have a Gamma(a, b)
distribution, where a/b is set to an estimate of the precision, and 2a
is the effective number of prior observations, assuming a Gamma(0,0)
pre-prior (see Table 3.1, normal y with unknown variance σ2).

• Regression coefficients: In many circumstances regression coefficients
will be unconstrained parameters in standard generalised linear mod-
els, say log-odds ratios in logistic regression, log-rate-ratios in Poisson
regression, log-hazard ratios in Cox regression, or ordinary coefficients in
standard linear models. In each case it is generally appropriate to assume
a normal distribution. Kynn (2005) described the elicitation of regres-
sion coefficients in GLMs by asking an expert for expected responses
for different values of a predictor. Lower and upper estimates, with an
associated degree of confidence, were also elicited, and the answers used
to derive piecewise-linear priors.

Example 5.3.1. Power calculations
A randomised trial is planned with n patients in each of two arms. The response
within each treatment arm is assumed to have between-patient standard deviation
σ, and the estimated treatment effect Y is assumed to have a Normal(θ, 2σ2/n)
distribution. A trial designed to have two-sided Type I error α and Type II error
β in detecting a true difference of θ in mean response between the groups will
require a sample size per group of

n =
2σ2

θ2
(z1−β + z1−α/2)

2,
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where Pr(Z < zp) = p for a standard normal variable Z ∼ Normal(0, 1). Alter-
natively, for fixed n, the power of the study is

Power = Φ

(
√

nθ2

2σ2
− z1−α/2

)

.

If we assume θ = 5, σ = 10, α = 0.05, β = 0.10, so that the power of the trial
is 90%, then we obtain z1−β = 1.28, z1−α/2 = 1.96, and n = 84.

Suppose we wish to acknowledge uncertainty about the alternative hypothesis
θ and the standard deviation σ. First, we assume past evidence suggests θ is
likely to lie anywhere between 3 and 7, which we choose to interpret as a 67%
interval (± 1 standard deviation), and so θ ∼ Normal(5, 22). Second, we assess
our estimate of σ = 10 as being based on around 40 observations, from which we
assume a Gamma(a, b) prior distribution for τ = 1/σ2 with mean a/b = 1/102

and effective sample size 2a = 40, from which we derive τ ∼ Gamma(20, 2000).

tau ~ dgamma(20, 2000)

sigma <- 1/sqrt(tau)

theta ~ dnorm(5, 0.25)

n <- 2*pow((1.28 + 1.96)*sigma/theta, 2) # n for 90% power

power <- phi(sqrt(84/2)*theta/sigma - 1.96) # power for n = 84

p70 <- step(power - 0.7) # Pr(power > 70%)

n sample: 10000

    0.0 1.00E+8 2.00E+8
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2.00E-6

3.00E-6

power sample: 10000
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FIGURE 5.4

Empirical distributions based on 10,000 simulations for: n, the number of subjects
required in each group to achieve 90% power, and power, the power achieved with
84 subjects in each group.

node mean sd MC error 2.5% median 97.5% start sample

n 38740.0 2.533E+6 25170.0 24.73 87.93 1487.0 1 10000

p70 0.7012 0.4577 0.004538 0.0 1.0 1.0 1 10000

power 0.7739 0.2605 0.002506 0.1151 0.8863 1.0 1 10000

Note that the median values for n (88) and power (0.89) are close to the values
derived by assuming fixed θ and σ (84 and 0.90, respectively), but also note the
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huge uncertainty. It is quite plausible, under the considered prior for θ and σ, that
to achieve 90% power the trial may need to include nearly 3000 subjects. Then
again, we might get away with as few as 50! A trial involving 84 subjects in each
group could be seriously underpowered, with 12% power being quite plausible.
Indeed, there is a 30% chance that the power will be less than 70%.

5.3.2 Discounting previous data

Suppose we have available some historical data and we could obtain a prior
distribution for the parameter θ based on an empirical estimate θ̂H , say, by
matching the prior mean and standard deviation to θ̂H and its estimated
standard error. If we were to use this prior directly then we would essentially
be pooling the data in a form of meta-analysis (see §11.4), in which case it
would be preferable (and essentially equivalent) to use a reference prior and
include the historical data directly in the model.

If we are reluctant to do this, it must be because we do not want to give the
historical data full weight, perhaps because we do not consider it to have the
same relevance and rigour as the data directly being analysed. We may there-
fore wish to discount the historical data using one of the methods outlined
below.

• Power prior: this uses a prior mean based on the historical estimate θ̂H ,
but discounts the “effective prior sample size” by a factor κ between 0
and 1: for example, a fitted Beta(a, b) would become a Beta(κa, κb), a
Gamma(a, b) would become a Gamma(κa, κb), a Normal(γ, ω2) would
become a Normal(γ, ω2/κ) (Ibrahim and Chen, 2000).

• Bias modelling: This explicitly considers that the historical data may be
biased, in the sense that the estimate θ̂H is estimating a slightly different
quantity from the θ of current interest. We assume that θ = θH+δ, where
δ is the bias whose distribution needs to be assessed. We further assume
δ ∼ [µδ, σ

2

δ ], where [, ] indicates a mean and variance but otherwise
unspecified distribution. Then if we assume the historical data give rise
to a prior distribution θH ∼ [γH , ω2

H ], we obtain a prior distribution for
θ of

θ ∼ [γH + µδ, ω
2

H + σ2

δ ].

Thus the prior mean is shifted and the prior variance is increased.

The power prior only deals with variability — the discount factor κ essen-
tially represents the “weight” on a historical observation, which is an attractive
concept to communicate but somewhat arbitrary to assess. In contrast, the
bias modelling approach allows biases to be added, and the parameters can
be defined in terms of the size of potential biases.
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Example 5.3.2. Power calculations (continued)
We consider the power example (Example 5.3.1) but with both prior distributions
discounted. We assume each historical observation informing the prior distribution
for σ is only worth half a current observation, so that the prior for σ is only based
on 10 rather than 20 observations. This discounts the parameters in the gamma
distribution for τ by a factor of 2. For the treatment effect, we assume that the
historical experiment could have been more favourable than the current one, so
that the historical treatment effect had a bias with mean −1 and SD 2, and so
would be expected to be between −5 and 3. Thus an appropriate prior distribution
is θ ∼ Normal(5 − 1, 22 + 22) or Normal(4, 8) — this has been constrained to
be > 0 using the I(,) construct (see Appendix A.2.2 and §9.6). This leads to
the code:

# tau ~ dgamma(20, 2000)

tau ~ dgamma(10, 1000) # discounted by 2

# theta ~ dnorm(5, 0.25)

theta ~ dnorm(4, 0.125)I(0,) # 4 added to var and shifted

# by -1, constrained to be >0

n sample: 10000

    0.0 2.0E+10 4.0E+10

    0.0

5.00E-9

1.00E-8

1.50E-8

2.00E-8

power sample: 10000

   -0.5     0.0     0.5     1.0

0.0
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6.0

FIGURE 5.5

Empirical distributions based on 10,000 simulations for: n, the number of subjects
required in each group to achieve 90% power, and power, the power achieved with
84 subjects in each group. Discounted priors for tau and theta used.

node mean sd MC error 2.5% median 97.5% start sample

n 4.542E+6 4.263E+8 4.26E+6 20.96 125.6 14270.0 1 10000

p70 0.5398 0.4984 0.005085 0.0 1.0 1.0 1 10000

power 0.6536 0.3315 0.003406 0.04353 0.7549 1.0 1 10000

This has raised the median sample size to 126, but with huge uncertainty. There
is a 46% probability that the power is less than 70% if the sample size stays at
84.
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5.4 Mixture of prior distributions

Suppose we want to express doubt about which of two or more prior distribu-
tions is appropriate for the data in hand. For example, we might suspect that
either a drug will produce a similar effect to other related compounds, or if
it doesn’t behave like these compounds we are unsure about its likely effect.

For two possible prior distributions p1(θ) and p2(θ) for a parameter θ, the
overall prior distribution is then a mixture

p(θ) = qp1(θ) + (1− q)p2(θ),

where q is the assessed probability that p1 is “correct.” If we now observe data
y, it turns out that the posterior for θ is

p(θ|y) = q′p1(θ|y) + (1− q′)p2(θ|y)

where

pi(θ|y) ∝ p(y|θ)pi(θ),

q′ =
qp1(y)

qp1(y) + (1− q)p2(y)
,

where pi(y) =
∫

p(y|θ)pi(θ) dθ is the predictive probability of the data y as-
suming pi(θ). The posterior is a mixture of the respective posterior distri-
butions under each prior assumption, with the mixture weights adapted to
support the prior that provides the best prediction for the observed data.

This structure is easy to implement in BUGS for any form of prior assump-
tions. We first illustrate its use with a simple example and then deal with
some of the potential complexities of this formulation. In the example, pick
is a variable taking the value j when the prior assumption j is selected in the
simulation.

Example 5.4.1. A biased coin?
Suppose a coin is either unbiased or biased, in which case the chance of a “head”
is unknown and is given a uniform prior distribution. We assess a prior probability
of 0.9 that it is unbiased, and then observe 15 heads out of 20 tosses — what is
the chance that the coin is biased?

r <- 15; n <- 20 # data

######################################

r ~ dbin(p, n) # likelihood

p <- theta[pick]

pick ~ dcat(q[]) # 2 if biased, 1 otherwise

q[1] <- 0.9
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q[2] <- 0.1

theta[1] <- 0.5 # if unbiased

theta[2] ~ dunif(0, 1) # if biased

biased <- pick - 1 # 1 if biased, 0 otherwise

biased sample: 100000

-1 0 1 2

0.0

0.2

0.4

0.6

0.8

theta[2] sample: 100000

   -0.5     0.0     0.5     1.0

    0.0

    0.5

    1.0

    1.5

    2.0

FIGURE 5.6

Biased coin: empirical distributions based on 100,000 simulations.

node mean sd MC error 2.5% median 97.5% start sample

biased 0.2619 0.4397 0.002027 0.0 0.0 1.0 1 100000

theta[2] 0.5594 0.272 9.727E-4 0.03284 0.6247 0.9664 1 100000

So the probability that the coin is biased has increased from 0.1 to 0.26 on
the basis of the evidence provided. The rather strange shape of the posterior
distribution for theta[2] is explained below.

If the alternative prior assumptions for theta in Example 5.4.1 were from
the same parametric family, e.g., beta, then we could formulate this as p

∼ dbeta(a[pick], b[pick]), say, with specified values of a[1], a[2], b[1],
and b[2]. However, the more general formulation shown in the example allows
prior assumptions of arbitrary structure.

It is important to note that when pick=1, theta[1] is sampled from its
posterior distribution, but theta[2] is sampled from its prior as pick=1 has
essentially “cut” the connection between the data and theta[2]. At another
MCMC iteration, we may have pick=2 and so the opposite will occur, and this
means that the posterior for each theta[j] recorded by BUGS is a mixture
of “true” (model specific) posterior and its prior. This explains the shape of
the posterior for theta[2] in the example above. If we are interested in the
posterior distribution under each prior assumption individually, then we could
do a separate run under each prior assumption, or only use those values for
theta[j] simulated when pick=j: this “post-processing” would have to be
performed outside BUGS.

We are essentially dealing with alternative model formulations, and our
q′s above correspond to posterior probabilities of models. There are well-
known difficulties with these quantities both in theory, due to their potential
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dependence on the within-model prior distributions, and in particular when
calculating within MCMC: see §8.7. In principle we can use the structure above
to handle a list of arbitrary alternative models, but in practice considerable
care is needed if the sampler is not to go “off course” when sampling from the
prior distribution at each iteration when that model is not being “picked.” It
is possible to define “pseudo-priors” for these circumstances, where pick also
dictates the prior to be assumed for theta[j] when pick �= j — see §8.7 and
Carlin and Chib (1995).

5.5 Sensitivity analysis

Given that there is no such thing as the true prior, sensitivity analysis to al-
ternative prior assumptions is vital and should be an integral part of Bayesian
analysis. The phrase “community of priors” (Spiegelhalter et al., 2004) has
been used in the clinical trials literature to express the idea that different
priors may reflect different perspectives: in particular, the concept of a “scep-
tical prior” has been shown to be valuable. Sceptical priors will typically be
centred on a “null” value for the relevant parameter with the spread reflecting
plausible but small effects. We illustrate the use of sceptical and other prior
distributions in the following example, where the evidence for an efficacious
intervention following myocardial infarction is considered under a range of
priors for the treatment effect, namely, “vague,” “sceptical,” “enthusiastic,”
“clinical,” and “just significant.”

Example 5.5.1. GREAT trial
Pocock and Spiegelhalter (1992) examine the effect of anistreplase on recovery
from myocardial infarction. 311 patients were randomised to receive either anistre-
plase or placebo (conventional treatment); the number of deaths in each group
is given in the table below.

Treatment total
anistreplase placebo

Event death 13 23 36
no death 150 125 275

total 163 148 311

Let rj , nj , and πj denote the number of deaths, total number of patients, and
underlying mortality rate, respectively, in group j ∈ {1, 2} (1 = anistreplase; 2
= placebo). Inference is required on the log-odds ratio (log(OR)) for mortality in
the anistreplase group compared to placebo, that is,

δ = log

{

π1/(1− π1)

π2/(1− π2)

}

= logitπ1 − logitπ2. (5.2)
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A classical maximum likelihood estimator and approximate variance are given by

δ̂ = log

{

r1/(n1 − r1)

r2/(n2 − r2)

}

, V (δ̂) ≈ s2 =
1

r1
+

1

r2
+

1

n1 − r1
+

1

n2 − r2
.

For the above data these give δ̂ = −0.753 with s = 0.368. An approximate
Bayesian analysis might proceed via the assumption δ̂ ∼ Normal(δ, s2) with
a locally uniform prior on δ, e.g., δ ∼ Uniform(−10, 10). A more appropri-
ate likelihood is a binomial assumption for each observed number of deaths:
rj ∼ Binomial(πj , nj), j = 1, 2. In this case we could be “vague” by specifying
Jeffreys priors for the mortality rates, πj ∼ Beta(0.5, 0.5), j = 1, 2, and then
deriving the posterior for δ via (5.2). Alternatively we might parameterise the
model directly in terms of δ:

logitπ1 = α+ δ/2, logitπ2 = α− δ/2,

which facilitates the specification of informative priors for δ. Here α is a nuisance
parameter and is assigned a vague normal prior: α ∼ Normal(0, 1002). Our first
informative prior for δ is a “clinical” prior based on expert opinion: a senior
cardiologist, informed by one unpublished and two published trials, expressed belief
that “an expectation of 15–20% reduction in mortality is highly plausible, while
the extremes of no benefit and a 40% relative reduction are both unlikely.” This is
translated into a normal prior with a 95% interval of −0.51 to 0 (0.6 to 1.0 on the
OR scale): δ ∼ Normal(−0.26, 0.132). We also consider a “sceptical” prior, which
is designed to represent a reasonable expression of doubt, perhaps to avoid early
stopping of trials due to fortuitously positive results. For example, a hypothetical
sceptic might find treatment effects more extreme than a 50% reduction or 100%
increase in mortality largely implausible, giving a 95% prior interval (assuming
normality) of -0.69 to 0.69 (0.5 to 2 on the OR scale): δ ∼ Normal(0, 0.352).

As a counterbalance to the sceptical prior we might specify an “enthusiastic”
or “optimistic” prior, as a basis for conservatism in the face of early negative
results, say. Such a prior could be centred around some appropriate beneficial
treatment effect with a small prior probability (e.g., 5%) assigned to negative
treatment benefits. We do not construct such a prior in this example, however,
since the clinical prior described above also happens to be “enthusiastic” in this
sense. Another prior of interest is the “just significant” prior. Assuming that the
treatment effect is significant under a vague prior, it is instructive to ask how
sceptical we would have to be for that significance to vanish. Hence we assume
δ ∼ Normal(0, σ2

δ ) and we search for the largest value of σδ such that the 95%
posterior credible interval (just) includes zero. BUGS code for performing such
a search is presented below along with code to implement the clinical, sceptical,
and vague priors discussed above. (Note that a preliminary search had been run
to identify the approximate value of σδ as somewhere between 0.8 and 1, though
closed form approximations exist for this “just signficant” prior (Matthews, 2001;
Spiegelhalter et al., 2004)).
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model {

for (i in 1:nsearch) { # search for "just

pr.sd[i] <- start + i*step # significant" prior

pr.mean[i] <- 0

}

pr.mean[nsearch+1] <- -0.26

pr.sd[nsearch+1] <- 0.13 # clinical prior

pr.mean[nsearch+2] <- 0

pr.sd[nsearch+2] <- 0.35 # sceptical prior

# replicate data for each prior and specify likelihood...

for (i in 1:(nsearch+3)) {

for (j in 1:2) {

r.rep[i,j] <- r[j]

n.rep[i,j] <- n[j]

r.rep[i,j] ~ dbin(pi[i,j], n.rep[i,j])

}

}

delta.mle <- -0.753

delta.mle ~ dnorm(delta[nsearch+4], 7.40)

# define priors and link to log-odds...

for (i in 1:(nsearch+2)) {

logit(pi[i,1]) <- alpha[i] + delta[i]/2

logit(pi[i,2]) <- alpha[i] - delta[i]/2

alpha[i] ~ dnorm(0, 0.0001)

delta[i] ~ dnorm(pr.mean[i], pr.prec[i])

pr.prec[i] <- 1/pow(pr.sd[i], 2)

}

pi[nsearch+3,1] ~ dbeta(0.5, 0.5)

pi[nsearch+3,2] ~ dbeta(0.5, 0.5) # Jeffreys prior

delta[nsearch+3] <- logit(pi[nsearch+3,1])

- logit(pi[nsearch+3,2])

delta[nsearch+4] ~ dunif(-10, 10) # locally uniform prior

}

list(r = c(13, 23), n = c(163, 148),

start = 0.8, step = 0.005, nsearch = 40)

The derived value of σδ is ∼0.925, corresponding to the 25th element of delta[]
above. Selected posterior and prior distributions are summarised below. We note
the essentially identical conclusions of the classical maximum likelihood approach
and the two analyses with vague priors. The results suggest we should conclude
that anistreplase is a superior treatment to placebo if we are either (a priori)
completely ignorant of possible treatment effect sizes, or we trust the senior car-
diologist’s expert opinion, or perhaps if we are otherwise enthusiastic about the
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new treatment’s efficacy. If, on the other hand, we wish to claim prior indiffer-
ence as to the sign of the treatment effect but we believe “large” treatment
effects to be implausible, we should be more cautious. The “just significant” prior
has a 95% interval of (exp(−1.96 × 0.925), exp(1.96 × 0.925)) = (0.16, 6.1)
on the OR scale, corresponding to reductions/increases in mortality as extreme
as 84%/610%. These seem quite extreme, implying that only a small degree of
scepticism is required to render the analysis “non-significant.” We might conclude
that the GREAT trial alone does not provide “credible” evidence for superiority,
and larger-scale trials are required to quantify the treatment effect precisely.

node mean sd MC error 2.5% median 97.5% start sample

delta[25] -0.6635 0.3423 5.075E-4 -1.343 -0.6609 3.598E-4 1001 500000

delta[41] -0.317 0.1223 1.741E-4 -0.5562 -0.317 -0.07745 1001 500000

delta[42] -0.3664 0.2509 3.497E-4 -0.8608 -0.366 0.1245 1001 500000

delta[43] -0.7523 0.367 5.342E-4 -1.487 -0.7479 -0.04719 1001 500000

delta[44] -0.7534 0.3673 5.432E-4 -1.475 -0.7529 -0.0334 1001 500000

box plot: p(delta | data)
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FIGURE 5.7

Left-hand side: Posterior distributions for δ from analysis of GREAT trial data.
From left to right: corresponding to “just significant,” “clinical,” “sceptical,”
“Jeffreys” and “locally uniform” priors. Right-hand side: Prior distributions for
analysis of GREAT trial data. From left to right: “just significant,” “clinical” and
“sceptical.”

A primary purpose of trying a range of reasonable prior distributions is
to find unintended sensitivity to apparently innocuous “non-informative” as-
sumptions. This is reflected in the following example.
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Example 5.5.2. Trams: a classic problem from Jeffreys (1939)
Suppose you enter a town of unknown size whose trams you know are numbered
consecutively from 1 to N . You first see tram number y = 100. How large might
N be?

We first note that the sampling distribution is uniform between 1 and N , so
that p(y|N) = 1

N , y = 1, 2, . . . , N . Therefore the likelihood function for N
is ∝ 1/N, N ≥ y, so that y maximises the likelihood function and so is the
maximum likelihood estimator. The maximum likelihood estimate is therefore
100, which does not appear very reasonable.

Suppose we take a Bayesian approach and consider the prior distributions on
the positive integers explored earlier (Example 5.2.2) — we will first examine the
consequences using WinBUGS and then algebraically. We first consider a prior
that is uniform on the integers up to an arbitrary upper bound M , say 5000. Y is
assumed drawn from a categorical distribution: the following code shows how to
set a uniform prior for N over the integers 1 to 5000 (as in Example 5.2.2) and
how to use the step function to create a uniform sampling distribution between
1 and N .

Y <- 100

########################

Y ~ dcat(p[])

# sampling distribution is uniform over first N integers

# use step function to change p[j] to 0 for j>N

for (j in 1:M) {

p[j] <- step(N - j + 0.01)/N

}

N ~ dcat(p.unif[])

for (j in 1:M) {

p.unif[j] <- 1/M

}

node mean sd MC error 2.5% median 97.5% start sample

N 1274.0 1295.0 10.86 109.0 722.0 4579.0 1001 10000

The posterior mean is 1274 and the median is 722, reflecting a highly skewed
distribution. But is this a sensible conclusion? For an improper uniform prior over
the whole of the integers, the posterior distribution is

p(N |y) ∝ p(y|N)p(N) ∝ 1/N, N ≥ y.

This series diverges and so this produces an improper posterior distribution. Al-
though our bounded prior is proper and so our posterior distribution is formally
proper, this “almost improper” character is likely to lead to extreme sensitivity
to prior assumptions. For example, a second run with M = 15,000 results in a



102 The BUGS Book

posterior mean of 3041 and median 1258. In fact we could show algebraically that
the posterior mean increases as M/ log(M); thus we can make it as big as we
want by increasing M (proof as exercise).

We now consider Jeffreys’ suggestion of a prior p(N) ∝ 1/N , which is improper
but can be constructed as follows if an upper bound, say 5000, is set.

N ~ dcat(p.jeffreys[])

for (j in 1:5000) {

reciprocal[j] <- 1/j

p.jeffreys[j] <- reciprocal[j]/sum.recip

}

sum.recip <- sum(reciprocal[])

The results show a posterior mean of 409 and median 197, which seems more
reasonable — Jeffreys approximated the probability that there are more than 200
trams as 1/2.

node mean sd MC error 2.5% median 97.5% start sample

N 408.7 600.4 4.99 102.0 197.0 2372.0 1001 10000

Suppose we now change the arbitrary upper bound to M = 15,000. Then the
posterior mean becomes 520 and median 200. The median, but not the mean,
is therefore robust to the prior. We could show that the conclusion about the
median is robust to the arbitrary choice of upper bound M by proving that as M
goes to infinity the posterior median tends to a fixed quantity (proof as exercise).

Finally, if a sensitivity analysis shows that the prior assumptions make a
difference, then this finding should be welcomed. It means that the Bayesian
approach has been worthwhile taking, and you will have to think properly
about the prior and justify it. It will generally mean that, at a minimum, a
weakly informative prior will need to be adopted.


