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Issues in Modelling

A strength of the Bayesian graphical modelling techniques of BUGS is the
way they can represent the typical complexities of real data. This chapter
explains various generic issues encountered in data analysis and how they can
be addressed in BUGS. For example, data commonly include missing values
and measurement errors. A realistic model may need to account for censor-
ing, truncation, grouping, rounding, or constraints on parameters, or use a
sampling or prior distribution not already included in BUGS. We also discuss
prediction, controlling “feedback” in graphical models, classical bootstrap es-
timation, and expressing uncertainty surrounding “ranks” or positions in a
league table. Each of the techniques we describe may be deployed as part of
any model in BUGS, with typically only a few extra lines of code.

9.1 Missing data

Missing data are common and there is an extensive literature covering a wide
variety of methods for dealing with the problem. Comprehensive textbooks on
the topic include Little and Rubin (2002), Molenberghs and Kenward (2007),
and Daniels and Hogan (2008). Missing values in BUGS are denoted by NA in
the data set, and from a Bayesian perspective, these are treated as additional
unknown quantities for which a posterior distribution can be estimated. Hence
the Bayesian approach makes no fundamental distinction between missing
data and unknown model parameters. We just need to specify an appropriate
joint model for the observed and missing data and model parameters, and
BUGS will generate posterior samples of the model parameters and missing
values in the usual way using MCMC.

The appropriateness of a particular missing data model is dependent on the
mechanism that leads to the missing data and the pattern of the missing data.
It also makes a difference whether we are dealing with missing responses or
missing covariates (or both). Following Rubin (1976), missing data are gen-
erally classified into three types: missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR). Informally,
MCAR occurs when the probability of missingness does not depend on ob-
served or unobserved data, in the less restrictive MAR it depends only on the
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observed data, and when neither MCAR nor MAR holds, the data are MNAR.
Under an MCAR or MAR assumption, it is not usually necessary to specify a
model for the missing data mechanism in order to make valid inference about
parameters of the observed data likelihood, in which case the missing data
mechanism is termed ignorable. In the case of MNAR missingness, the fact
that a given value is missing tells us something about what that value might
have been. In this case the missing data mechanism is informative and we
must specify a model for it. There are two main approaches to this, using ei-
ther a pattern mixture model or a selection model (Daniels and Hogan, 2008).
In either case, the parameters of such a model cannot be uniquely inferred
from the data, and so informative priors or parameter constraints are typ-
ically required. Inferences can thus be sensitive to the choices made — see
Best et al. (1996) and Mason et al. (2012) for detailed discussions in the case
of selection models. In the following examples we illustrate how to implement
some specific models for missing response or missing covariate data in BUGS
that make different assumptions about the missing data mechanism. A com-
prehensive discussion of a wide range of Bayesian missing data models can be
found in Daniels and Hogan (2008).

9.1.1 Missing response data

For ignorable missing response data, we can chose to remove it from the
data set, but often this is inconvenient. If we simply denote the value as
missing (NA) in the dataset, then BUGS will automatically generate values
from its posterior predictive distribution — see §9.2 — and inferences on the
parameters will be as if we had deleted that response.

Example 9.1.1. Growth curve (continued): ignorable missing response data
mechanism
We look again at the growth data from a single rat previously considered as an
example of regression analysis (Example 6.1.1). We assume that the final data-
point (actually 376 g) is missing. If we assume that the chance of a value being
missing does not directly depend on the true underlying weight, then an identical
regression model can be adopted and only the data file changed.

for (i in 1:5) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta*(x[i] - mean(x[]))

}

alpha ~ dflat()

.....

list(y = c(177,236,285,350,NA), x = c(8,15,22,29,36))

node mean sd MC error 2.5% median 97.5% start sample

alpha 290.3 7.029 0.06709 279.4 290.4 300.8 4001 10000
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beta 8.104 0.8881 0.007908 6.79 8.11 9.355 4001 10000

sigma2 188.1 2915.0 58.29 5.72 29.08 926.0 4001 10000

mu[5] 403.8 16.74 0.158 377.6 404.0 427.7 4001 10000

y[5] 403.6 20.52 0.2122 371.5 404.0 434.2 4001 10000

model fit: mu (missing at random)

day
    0.0    10.0    20.0    30.0    40.0

weight

 100.0

 200.0

 300.0

 400.0

 500.0

model fit: mu (informative missingness)

day
    0.0    10.0    20.0    30.0    40.0

weight

 100.0

 200.0

 300.0

 400.0

 500.0

FIGURE 9.1

Model fits for rat 9’s data with final observation missing. The plotted point (•)
corresponding to the missing value y[5], at 36 days, is the posterior mean. The
interval plotted at x[5] is for mu[5], not y[5]. Top: y[5] missing at random.
Bottom: informative missingness for y[5].

The model fit is shown at the top of Figure 9.1. The estimated value for the
missing data point y[5] lies on the fitted line; the 95% credible interval is wider
than that for mu[5] (see table above), since it allows for the uncertainty about
mu[5] as well as for the sampling error σ (= τ−1/2), and uncertainty about σ.

Example 9.1.2. Growth curve (continued): informative missing response data
mechanism
Again we assume the final observation is missing, but now we also assume that the
chance of an observation being missing depends on the true weight: specifically



188 The BUGS Book

the odds of being missing increase by 2% for every extra gram of weight. The data
now has to include an indicator miss[] for whether an observation is missing or
not, and our assumption about the missing data mechanism is specified using a
logistic selection model for the probability of missingness, with b=log(1.02).

for (i in 1:5) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta*(x[i] - mean(x[]))

# selection model for missing data mechanism

miss[i] ~ dbern(p[i])

logit(p[i]) <- a + b*(y[i]-250)

}

a ~ dlogis(0, 1)

b <- log(1.02)

.....

list(y = c(177,236,285,350,NA), x = c(8,15,22,29,36),

miss = c(0,0,0,0,1))

Here we specify a logistic prior for a, equivalent to a uniform prior on the proba-
bility of an observation with a true value of 250 g being missing (see §5.2.5).

node mean sd MC error 2.5% median 97.5% start sample

a -1.973 1.082 0.01081 -4.262 -1.913 0.01912 4001 10000

alpha 291.4 13.13 0.3402 280.5 290.6 303.5 4001 10000

beta 8.228 1.314 0.03709 7.035 8.133 9.677 4001 10000

sigma2 433.0 4537.0 177.5 5.755 30.73 1063.0 4001 10000

mu[5] 406.6 27.89 0.8487 382.7 404.6 435.0 4001 10000

y[5] 408.4 38.23 1.368 378.6 404.9 447.1 4001 10000

The assumption about the missing data mechanism has raised the estimated
missing weight from 404 to 408 g, and the posterior mean gradient from 8.10
to 8.23. The fact that the final data point is missing suggests that it has a
larger value than it might have had if it were missing at random. Note that
the missing weight is no longer estimated on the fitted line but slightly above
it — see Figure 9.1 (bottom). In practice, we would want to examine sensitivity
to different assumptions about the missing data mechanism, particularly to the
value of b. It is also possible to treat b as random and specify a prior distribution
for it, although posterior learning about the parameters of the selection model is
heavily dependent on model assumptions (see Mason et al. 2012). Note that with
more complex examples, reasonably tight priors and careful choice of initial values
for the parameters of the selection model may be needed to avoid convergence
problems and possible crashes of the MCMC sampling algorithms.



Issues in Modelling 189

9.1.2 Missing covariate data

In the case of missing covariates, again NA can be specified for each missing
value. However, the difference between missing responses and missing covari-
ates is that we would not have specified a prior distribution or model for the
covariates if they had been fully observed. Hence we must introduce a model
or prior for the missing values, even if the missing data mechanism can be
assumed to be ignorable. One option is to specify a prior distribution with
common unknown parameters for both observed and unobserved values of
the relevant covariate and then priors for the parameters of this distribution.
The observed values of the covariate will contribute to the estimation of the
unknown parameters, which, in turn, will inform about the missing values.
This approach is only valid if the missing and observed covariate values can
be assumed to be exchangeable, which is a mathematical formalisation of the
assumption that a group of quantities is similar in some sense. Such assump-
tions are further discussed in Chapter 10. We illustrate this approach below.

Example 9.1.3. Dugongs (continued): ignorable missing covariate mechanism
We look again at version 3 of the non-linear growth curve model for the lengths
of 27 dugongs, previously considered as an example of regression analysis (Exam-
ple 6.3.1). In the current example we assume that the ages of four of the dugongs
were not recorded. In specifying a prior distribution for the missing ages we should
bear in mind that the growth curve is only meaningful for non-negative values of
age. Here we constrain each unknown age to be positive by assuming that all ages
arise from a log-normal distribution (dlnorm() — see Appendix C.2) with com-
mon unknown parameters. A more appropriate assumption might be a truncated
normal distribution, truncated at zero. Note, however, that we would not be able
to use the I(,) construct to truncate the distribution, since the parameters of
that distribution would be unknown — see §9.6.2 and Appendix A.2.2 for further
details, including alternative ways of specifying truncated distributions.

for(j in 1:27) {

y[j] ~ dnorm(mu[j], tau)

mu[j] <- alpha - beta*pow(gamma, x[j])

# prior on covariate

x[j] ~ dlnorm(mu.x, p.x)

}

...

# priors on mean and precision of covariate model

mu.x ~ dunif(-10, 10)

p.x <- 1/pow(sd.x, 2)

sd.x ~ dunif(0, 10)

...

list(x = c(1.0,1.5,1.5,NA,2.5,4.0,5.0,5.0,NA,8.0,8.5,9.0,

9.5,9.5,10.0,12.0,12.0,13.0,NA,14.5,15.5,15.5,
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16.5,17.0,NA,29.0,31.5),

y = c(1.80,1.85,1.87,1.77,2.02,2.27,2.15,2.26,2.47,

2.19,2.26,2.40,2.39,2.41,2.50,2.32,2.32,2.43,

2.47,2.56,2.65,2.47,2.64,2.56,2.70, 2.72,2.57))

node mean sd MC error 2.5% median 97.5% start sample

alpha 2.649 0.06845 0.001528 2.527 2.645 2.797 4001 50000

beta 0.9604 0.07883 9.338E-4 0.8136 0.9584 1.116 4001 50000

gamma 0.8661 0.03251 7.006E-4 0.7926 0.8707 0.9152 4001 50000

mu.x 2.096 0.2087 9.875E-4 1.689 2.094 2.512 4001 50000

sd.x 1.048 0.1722 0.001139 0.7735 1.027 1.444 4001 50000

sigma 0.0955 0.01605 1.407E-4 0.07019 0.09341 0.1325 4001 50000

x[4] 1.395 0.7006 0.004034 0.3363 1.299 3.035 4001 50000

x[9] 16.7 18.08 0.1805 6.831 12.77 54.61 4001 50000

x[19] 17.52 22.87 0.2601 6.821 12.88 59.72 4001 50000

x[25] 38.5 39.62 0.3918 12.3 28.05 127.9 4001 50000

There is considerable uncertainty regarding the “true” values of the missing co-
variates, particularly for dugongs 9, 19, and 25. The actual values of the four
missing ages are 1.5, 7, 13, and 22.5, and all of these are included within the
estimated 95% credible intervals, although for dugong 9 this is only just the case.
This reflects the influence of the response value, y, on the posterior distribution of
each missing x — dugong 9 was long for its age (y[9] = 2.47) and hence values
of age somewhat larger than the actual value are consistent with the fitted model.
In fact, dugongs 9 and 19 had identical lengths, and so the posterior distributions
for x[9] and x[19] are identical to within sampling error.

If there are other fully observed covariates in the regression model of in-
terest, the previous approach will not account for correlation between these
and the covariate being imputed. In this case, a better option is to specify a
regression model to impute the missing covariates as a function of other co-
variates. This model may include covariates not in the main model of interest
and is similar in spirit to the two-stage multiple imputation (MI) approach of
Rubin (1987). As with standard MI, variables that are predictive of both the
missing covariate itself and of the missing data mechanism should be included
in the imputation model. When multiple covariates have missing values, it is
also important to reflect the dependence structure of the covariates in the
imputation model.

Example 9.1.4. Birthweight: regression model for imputing missing covariates
Trihalomethanes (THM) are a chemical byproduct of the treatment process used
to disinfect the public water supply in the UK. Molitor et al. (2009) analyse the
association between THM levels in domestic tap water and the risk of giving birth
to a low birthweight (< 2.5 kg) baby. They use data from the UK National Births
Register on maternal age, baby’s gender and birthweight, and use the mother’s
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residential postcode to link modelled estimates of average THM levels in the
water supply zone of residence to each birth. Maternal smoking and ethnicity are
known risk factors for low birthweight and are potential confounders of the THM
effect due to their spatial patterning, which correlates with spatial variations in
THM levels. Smoking and ethnicity are not recorded in the birth register but are
available for a subset of the mothers who participated in a national birth cohort
study. Molitor et al. (2009) build a full Bayesian model to impute the missing
smoking and ethnicity indicators for mothers in the birth register who did not
participate in the cohort study and to simultaneously estimate the regression of
low birthweight on THM levels adjusted for confounders.

Here we use simulated data that mimics a slightly simplified version of this
problem. The model of interest is a logistic regression of the low birthweight
indicator lbw on binary indicators of THM level > 60 µg/L (THM), male baby
(male), non-white maternal ethnicity (eth), maternal smoking during pregnancy
(smk), and deprived local area (dep). smk and eth are recorded for 20% of mothers
but are missing for the remaining 80%; all other variables are fully observed. To
impute the missing covariate values, we build a bivariate regression model for smk
and eth assuming correlated errors. Since these are both binary indicators, we
use multivariate probit regression (Chib and Greenberg, 1998) in which smk and
eth are equal to thresholded values of a bivariate normal latent variable Z,

Zi = (Zi1, Zi2)
′ ∼ MVN(μi,Ω), i = 1, . . . , n;

smki = I(Zi1 ≥ 0); ethi = I(Zi2 ≥ 0),

where Ω must be in correlation form for identifiability reasons. The elements of
μi = (μi1, μi2)

′ are modelled as independent linear functions of covariates, which
include the other variables in the regression model for lbw plus area-level measures
of the proportion of the population who smoke (area.smk) and who are non-white
(area.eth). Unlike standard multiple imputation, it is not necessary to include
the response variable from the regression model of interest (lbw in this case)
in the covariate imputation model, since information about lbw is automatically
propagated via feedback from the assumed regression model of lbw on smk and
eth. Likelihood information about the observed values of smk and eth is included
in the imputation model by specifying bounds on Zi such that Zi1 ∈ (−∞, 0) if
smki = 0, Zi1 ∈ [0,∞) if smki = 1, Zi2 ∈ (−∞, 0) if ethi = 0, and Zi2 ∈ [0,∞)
if ethi = 1. If smki and ethi are missing, the corresponding bounds on Zi1 and Zi2

are set to (−∞,∞). In BUGS this is done using the I(lower,upper) notation
(§9.6) and including vectors giving values of the lower and upper bounds in the
data file. Since a value of ±∞ cannot be specified in the data file, we instead use
an arbitrarily large value relative to the scale of the latent Z variable (say ± 10).
Initial values for the parameters of the regression model of interest and for the
imputation model need to be chosen carefully to ensure that they both provide
compatible information about the missing covariate values; strongly conflicting
initial values can cause the MCMC samplers in BUGS to crash.

for (i in 1:n) {
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lbw[i] ~ dbern(p[i])

logit(p[i]) <- beta[1] + beta[2]*THM[i] +

beta[3]*male[i] + beta[4]*dep[i] +

beta[5]*smk[i] + beta[6]*eth[i]

}

for (k in 1:6) {

beta[k] ~ dnorm(0, 0.0001)

}

for (k in 2:6) {

OR[k] <- exp(beta[k])

}

# multivariate probit covariate imputation model

for (i in 1:n) {

Z[i,1:2] ~ dmnorm(mu[i,1:2],

Omega[1:2,1:2])I(lo[i,1:2],up[i,1:2])

mu[i,1] <- delta[1,1] + delta[2,1]*THM[i] +

delta[3,1]*male[i] + delta[4,1]*dep[i] +

delta[5,1]*area.smk[i] +

delta[6,1]*area.eth[i]

mu[i,2] <- delta[1,2] + delta[2,2]*THM[i] +

delta[3,2]*male[i] + delta[4,2]*dep[i] +

delta[5,2]*area.smk[i] +

delta[6,2]*area.eth[i]

}

for (i in 1:Nmis) { # Data file is ordered so subjects

# 1,...,Nmis have missing values

smk[i] <- step(Z[i,1]) # thresholded value of Z[i,1]

eth[i] <- step(Z[i,2]) # thresholded value of Z[i,2]

}

Sigma[1,1] <- 1

Sigma[2,2] <- 1

Sigma[1,2] <- corr

Sigma[2,1] <- corr

corr ~ dunif(-1, 1)

Omega[1:2, 1:2] <- inverse(Sigma[,])

for (k in 1:6) {

delta[k,1] ~ dnorm(0, 0.0001)

delta[k,2] ~ dnorm(0, 0.0001)

}

node mean sd MC error 2.5% median 97.5% start sample

OR[2] 1.178 0.121 0.002129 0.956 1.172 1.425 1001 20000

OR[3] 0.8095 0.08177 0.001518 0.6607 0.8052 0.9821 1001 20000

OR[4] 1.007 0.101 0.001919 0.8243 1.001 1.221 1001 20000

OR[5] 2.915 0.5202 0.01434 2.033 2.867 4.057 1001 20000

OR[6] 4.116 0.7181 0.01833 2.897 4.053 5.716 1001 20000
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corr -0.3039 0.05583 0.002219 -0.4096 -0.3046 -0.1904 1001 20000

There is a small excess risk of low birthweight for mothers with high THM levels in
their tap water supply, although the posterior 95% credible interval just includes
the null odds ratio. Maternal smoking and non-white ethnicity confer substantially
increased risks of low birthweight, although the wide credible intervals for these
effects reflect uncertainty due to the high proportion of missing values. Analysis
of the complete cases only produced a far more uncertain estimate of the THM
effect (mean of OR[2] = 1.13, 95% CI 0.76 to 1.64), whilst analysis of the full
data excluding the confounders smk and eth from the regression model produced
an upwardly biased estimate of the THM effect (mean of OR[2] = 1.44, 95% CI
1.21 to 1.70).

9.2 Prediction

There are a number of reasons why we may want to predict an unknown
quantity Y pred. We may want to “fill in” missing or censored data (§9.1) or
predict replicate datasets in order to check the adequacy of our model (§8.4).
Finally, we may simply want to make predictions about the future.

If we were working within a classical paradigm, it would not be straightfor-
ward to make full predictions after fitting a statistical model. Although point
predictions of a future quantity Y pred may be easy, obtaining the appropriate
full predictive distribution for Y pred is challenging, as one needs to account for
three components: uncertainty about the expected future value E[Y pred], the
inevitable sampling variability of Y pred around its expectation, and the un-
certainty about the size of that error, as well as the correlations between these
components. Fortunately, it is so trivial to obtain such predictive distributions
using MCMC that it can be dealt with very briefly.

Suppose we have a model p(ypred|θ) and a fully specified prior distribution
p(θ). We have already seen in §2.7 how Monte Carlo methods can produce the
predictive distribution of a future quantity as p(ypred) =

∫
p(ypred|θ)p(θ)dθ by

simply including ypred in the model and treating it as an unknown quantity.
The same principle applies if instead we are using MCMC methods with a
posterior distribution p(θ|y) (Chapter 4). In the example below we point out
that, rather than explicitly include the quantities to be predicted in the model
description, it may be easier to just expand the dataset to include missing data
indicated as NA.
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Example 9.2.1. Dugongs (continued): prediction
Consider again the growth model for dugongs from Example 6.3.1. Suppose we
want to project the length of dugongs beyond the currently observed age range,
say at ages 35 and 40 years. We could explicitly include, as quantities in the model,
the expected lengths of all dugongs at those ages, as well as the observable lengths
of specific future dugongs. Assuming

yj ∼ Normal(μj , σ
2 = τ−1), μj = α− βγxj

for the observed data, we add the code

mu35 <- alpha - beta*pow(gamma, 35)

mu40 <- alpha - beta*pow(gamma, 40)

y35 ~ dnorm(mu35, tau)

y40 ~ dnorm(mu40, tau)

Alternatively, it will generally be easier to leave the model description unmodified
and instead expand the data file with two dugongs of the appropriate ages but
with missing lengths:

list(N = 29,

x = c(1.0, 1.5, 1.5, ..., 29.0, 31.5, 35, 40),

y = c(1.80, 1.85, 1.87, ..., 2.72, 2.57, NA, NA))

Posterior predictive summaries for the quantities of interest are given by

node mean sd MC error 2.5% median 97.5% start sample

mu[28] 2.638 0.05949 0.002778 2.528 2.635 2.762 1001 10000

mu[29] 2.642 0.06291 0.002959 2.528 2.638 2.775 1001 10000

y[28] 2.637 0.1153 0.002654 2.408 2.638 2.865 1001 10000

y[29] 2.642 0.1179 0.003107 2.413 2.64 2.881 1001 10000

The intervals around mu[28] and mu[29] reflect uncertainty concerning the fitted
parameters α, β, and γ, as is the case for the other elements of mu. Intervals
around the missing ys additionally reflect the sampling error σ and uncertainty
about the value of σ. The model fit and predictive intervals for mu[28] and
mu[29] are shown together in Figure 9.2. Widening of the intervals towards the
right-hand side of the plot has nothing to do with the fact that the right-most
intervals are predictive; this is simply due to greater uncertainty in the fitted curve
for older animals.



Issues in Modelling 195

model fit: mu

age (yrs)

    0.0    10.0    20.0    30.0    40.0

length (m)

    1.8

    2.0

    2.2

    2.4

    2.6

FIGURE 9.2

Model fit for observed dugongs data, with 95% posterior predictive intervals for
the expected dugong length at ages 35 and 40 years. The points plotted (•) at
35 and 40 years are the posterior median values of y[28] and y[29], which are
specified as missing. The points coincide exactly with the predictive medians for
mu[28] and mu[29].

9.3 Measurement error

Errors in measurement can occur for both responses and covariates. The for-
mer case is straightforward, since standard statistical models can be thought
of as encompassing errors in measurement and we can select the appropriate
response distribution. When covariates are measured with error, there are two
possible models: classical and Berkson.

The more common, classical model is represented in the graph shown in
Figure 9.3(a), in which the observed covariate x is assumed conditionally
independent of the response y given the “true” underlying covariate value z.
The covariate may be categorical or continuous, but in either case needs to
be provided with a prior distribution, with parameters ψ, say, which may or
may not be known. In addition, an error model is assumed with parameters
φ, which in order to be identifiable will need to be either assumed known or
estimable from a subset of data in which both x and z are observed.

Example 9.3.1. Cervix: case-control study with errors in covariates
Carroll et al. (1993) consider the problem of estimating the odds ratio of a disease
d in a case-control study where the binary exposure variable is measured with
error. Their example concerns exposure to herpes simplex virus (HSV) in women
with invasive cervical cancer (d = 1) and in controls (d = 0). Exposure to HSV
is measured by a relatively inaccurate western blot procedure x for 1929 of the
2044 women, whilst for 115 women, it is also measured by a refined or “gold
standard” method z. The data are given in Table 9.1. They show a substantial
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FIGURE 9.3

DAGs depicting classical and Berkson measurement error models. The re-
sponse variable y is regressed on “true” covariates z, with regression coeffi-
cients β. (a) Classical model: the observed covariates x are assumed dependent
on the true values z via an error model with parameters φ; a prior distribution
with parameters ψ is specified for z. (b) Berkson error model: the true covari-
ates z are assumed dependent on the observed values x via an error model
with parameters φ.

amount of misclassification, as indicated by low sensitivity and specificity of x in
the “complete” data. The degree of misclassification is also significantly higher
for the controls than for the cases (p = 0.049 by Fisher’s exact test).

A (prospective) logistic model is fitted to the case-control data as follows

di ∼ Bernoulli(pi), logit(pi) = β0 + βzi, i = 1, . . . , 2044,

where β is the log odds ratio of disease d. Since the relationship between d and z
is only directly observable in the 115 women with “complete” data, and because
there is evidence of differential measurement error, the following parameters are
required in order to estimate the misclassification model:

φ11 = Pr(x = 1|z = 0, d = 0)

φ12 = Pr(x = 1|z = 0, d = 1)

φ21 = Pr(x = 1|z = 1, d = 0)

φ22 = Pr(x = 1|z = 1, d = 1)

ψ = Pr(z = 1)

BUGS code for the model is as follows:

for (i in 1:n) {
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TABLE 9.1

Case-control data for cervix example.

Complete data Incomplete data
d z x Count d z x Count
1 0 0 13 1 — 0 318
1 0 1 3 1 — 1 375
1 1 0 5 0 — 0 701
1 1 1 18 0 — 1 535
0 0 0 33
0 0 1 11
0 1 0 16
0 1 1 16

d[i] ~ dbern(p[i])

logit(p[i]) <- beta0 + beta*z[i]

z[i] ~ dbern(psi)

x[i] ~ dbern(phi[z1[i], d1[i]])

z1[i] <- z[i] + 1

d1[i] <- d[i] + 1

}

for (j in 1:2) {

for (k in 1:2) {

phi[j, k] ~ dunif(0, 1)

}

}

psi ~ dunif(0, 1)

beta0 ~ dnorm(0, 0.0001)

beta ~ dnorm(0, 0.0001)

where the z1 and d1 variables are created because phi[] must be indexed with
1s and 2s, as opposed to 0s and 1s, and functions are not allowed as indices.
The data can be specified “long-hand” with three entries (d, z, x) for each of
the 2044 individuals. Alternatively the individual-level data can be “constructed”
from Table 9.1 via the following additional code:

for (j in 1:8) {

for (i in offset[j]:offset[j+1]-1) {

d[i] <- d.com[j]; x[i] <- x.com[j]; z[i] <- z.com[j]

}

}

for (j in 9:12) {

for (i in offset[j]:offset[j+1]-1) {

d[i] <- d.inc[j-8]; x[i] <- x.inc[j-8]

}

}
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where d.com, x.com, and z.com denote the complete data, d.inc and x.inc
denote the incomplete data, and offset contains the cumulative counts of indi-
viduals within each category: offset=c(1, 14, 17, 22, 40, 73, 84, 100,
116, 817, 1352, 1670, 2045). Posterior summaries are given in the table be-
low.

node mean sd MC error 2.5% median 97.5% start sample

beta 0.6213 0.3617 0.01924 -0.09153 0.6188 1.345 1001 20000

beta0 -0.9059 0.199 0.01045 -1.321 -0.8996 -0.5283 1001 20000

phi[1,1] 0.3177 0.05309 0.00199 0.2109 0.3186 0.4199 1001 20000

phi[1,2] 0.2212 0.08055 0.003301 0.07556 0.2188 0.3884 1001 20000

phi[2,1] 0.5691 0.06352 0.002116 0.4428 0.5683 0.6941 1001 20000

phi[2,2] 0.7638 0.06187 0.002506 0.6409 0.7646 0.8806 1001 20000

psi 0.4923 0.04304 0.001771 0.4057 0.4929 0.5771 1001 20000

From this output we can estimate that the chance of falsely identifying HSV
using a western blot is 32% in controls and 22% in cases, while the chance of
missing a true HSV is 44% in controls and 24% in cases. Accounting for this
misclassification results in a substantially de-attenuated estimate of the exposure
log-odds ratio, although the increased uncertainty means that this is no longer
statistically significant (posterior mean and 95% CI for beta = 0.62 (−0.09, 1.35)
compared to 0.45 (0.27, 0.63) if covariate misclassification is ignored).

Example 9.3.2. Dugongs (continued): measurement error on age
Recalling again Example 6.3.1, we now assume that the observed age xj is an
imperfect measure of the true age zj, with measurement standard deviation 1.
We consider the model

yj ∼ Normal(μj , σ
2), μj = α− βγzj , xj ∼ Normal(zj , 1),

with α, β ∼ Uniform(0, 100), γ ∼ Uniform(0, 1), and log σ ∼ Uniform(−10, 10).
In addition, a prior distribution for each zj is required. In the absence of prior
knowledge we assume zj ∼ Uniform(0, 100) for j = 1, . . . , n. BUGS code for the
model is given by

for(j in 1:n) {

y[j] ~ dnorm(mu[j], tau)

mu[j] <- alpha - beta*pow(gamma, z[j])

x[j] ~ dnorm(z[j], 1)

z[j] ~ dunif(0, 100)

}

alpha ~ dunif(0, 100)

beta ~ dunif(0, 100)

gamma ~ dunif(0, 1)

tau <- 1/sigma2
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log(sigma2) <- 2*log.sigma

log.sigma ~ dunif(-10, 10)

The model fit is shown in Figure 9.4. Note that the “true” ages zj , j = 1, . . . , n,
are estimated such that the model fit is improved. This is reflected by a posterior
median value for σ2 of 0.0078, which is reduced from 0.0094 (when no measure-
ment error was assumed — see Example 6.3.1). Figure 9.5 shows the posterior
distribution of the difference between each observed and “true” age, calculated
by adding the code:

for (j in 1:n) {resx[j] <- x[j] - z[j]}

Where the fit is not improved by estimating z[j] away from the observed value
x[j], the distribution of resx[j] is approximately standard normal. We can see
that, particularly in the first half of the dataset, there is considerable adjustment
of the ages being entered into the regression equation.

model fit: mu

'true' age z (yrs)
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model fit: mu
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FIGURE 9.4

Model fits from analysis of dugongs data assuming a classical measurement error
model for the observed ages. Left-hand side: model fit plotted against posterior
median “true” ages, zj, j = 1, . . . , n. Right-hand side: model fit plotted against
observed ages xj , j = 1, . . . , n.

Berkson errors arise in situations where the observed covariates are expected
to be less variable than the “true” values, perhaps because the observed values
are aggregated. This can occur when the covariates measure environmental
exposure, say, such as levels of air pollution. The observed values may be
summary measures for geographical areas, each, perhaps, taken at a single site
or summed/averaged over the area. The actual exposures of individuals within
those areas would then be expected to be more variable than the recorded
values. This leads to a measurement error model in which the true covariate
value depends on the observed value, rather than the other way round as
in classical measurement error (see the right-hand side of Figure 9.3). The
following example illustrates the use of a Berkson model for air pollution
data.
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box plot: resx
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FIGURE 9.5

Box plot summarising posterior distributions of the difference between each ob-
served and “true” age for the dugongs example with covariate measurement error.

Example 9.3.3. Air pollution: Berkson measurement error
Whittemore and Keller (1988) examine data regarding the potential effects of
exposure to nitrogen dioxide (NO2) on respiratory illness. One hundred and three
children are categorised as having respiratory illness or not and of being exposed
to one of three different levels of NO2 in their bedrooms:

Bedroom NO2 level in ppb (x)
Respiratory illness (y) < 20 20–40 40+ Total

Yes 21 20 15 56
No 27 14 6 47

Total (n) 48 34 21 103

The three exposure categories (indexed by j) are thought of as a surrogate for
“true exposure,” and the nature of the measurement error relationship is known
precisely from a separate calibration study:

zj = α+ βxj + ǫj, j = 1, 2, 3,

where xj equals 10, 30, and 50 for j = 1, 2, and 3, respectively, and zj is
interpreted as the “true average value” of NO2 in group j. In addition, from the
calibration study we assume α = 4.48, β = 0.76, and ǫj ∼ Normal(0, 81.14),
j = 1, 2, 3. We wish to fit the following logistic regression:

yj ∼ Binomial(pj , nj), logit(pj) = θ1 + θ2zj , j = 1, 2, 3,

where nj is the total number of children in group j.
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for (j in 1:3) {

y[j] ~ dbin(p[j], n[j])

logit(p[j]) <- theta[1] + theta[2]*z[j]

z[j] ~ dnorm(mu[j], 0.01232)

mu[j] <- alpha + beta*x[j]

}

theta[1] ~ dnorm(0, 0.0001)

theta[2] ~ dnorm(0, 0.0001)

node mean sd MC error 2.5% median 97.5% start sample

theta[1] -0.8096 0.8559 0.03736 -2.889 -0.6557 0.3502 12001 20000

theta[2] 0.04207 0.03144 0.001313 -0.002226 0.03667 0.1212 12001 20000

z[1] 12.8 8.299 0.2011 -3.881 12.98 28.81 12001 20000

z[2] 27.43 7.474 0.08438 12.95 27.37 42.39 12001 20000

z[3] 41.43 8.56 0.1437 25.35 41.23 58.56 12001 20000

Note that the effect of NO2 exposure on the chances of developing a respiratory
illness is almost, but not quite, significant in this analysis: the 95% credible interval
for θ2, which represents the log odds ratio for a unit increase in “true exposure”
only just includes zero.

9.4 Cutting feedback

In the dugongs example 9.3.2 above the true ages are estimated such that they
improve the fit of the line. In many cases, this is exactly what we would want:
the information in the measured ages regarding the values of the true ages is
supplemented by feedback from the response data (dugong lengths) due to the
assumed relationship between length and age. However, there are situations
in which we might wish to infer the values of missing variables based solely on
the observed values of those variables. In other words, we may wish to ignore,
or “cut” the feedback from the response data. We can achieve this using the
cut() function in WinBUGS,∗ as illustrated in the following example.

Example 9.4.1. Cutting feedback
Consider the simple linear regression presented in Figure 9.6(a). In this case the
values of the variable plotted on the x-axis are assumed known. However, suppose
we know that they are measured with error and that the standard deviation of
those errors is 1.5. We denote the response variable by yi, i = 1, . . . , n, and

∗or OpenBUGS. There is no “cut” function currently in JAGS.



202 The BUGS Book

the modelled and observed values of the independent variable by zi and xi, i =
1, . . . , n, respectively. (Note that xi = i, i = 1, . . . , n.) One option is to assume:

yi ∼ Normal(μi, σ
2), μi = a+ bzi, xi ∼ Normal(zi, 1.5

2),

with appropriate priors on a, b, σ, and each zi. This would allow estimation of the
zis to be influenced by feedback from the yis. To cut this feedback, we assume
instead

zi = cut(z∗i ), xi ∼ Normal(z∗i , 1.5
2),

with appropriate priors on the z∗i s, e.g., z
∗
i ∼ Uniform(−100, 100), i = 1, . . . , n.

The cut(.) function here makes a copy of the variable passed as an argument but
otherwise severs the link between argument and result, z∗i and zi, respectively,
in this case. Hence zi always has the same value as z∗i but z∗i is isolated from
the yis and cannot be influenced by them. The following BUGS code fits models
with and without feedback as well as the model in which zi = xi, i = 1, . . . , n.
In order to fit multiple models simultaneously we must make multiple copies of
the dataset {yi, xi, i = 1, . . . , n}, as shown below.

model {

for (m in 1:3) {

for (i in 1:n) {

y.copy[m, i] <- y[i]

x.copy[m, i] <- x[i]

y.copy[m, i] ~ dnorm(mu[m, i], tau[m])

mu[m, i] <- a[m] + b[m]*z[m, i]

}

a[m] ~ dnorm(0, 0.0001)

b[m] ~ dnorm(0, 0.0001)

tau[m] <- 1/pow(sigma[m], 2)

sigma[m] ~ dunif(0, 100)

}

for (i in 1:n) {

z[1, i] <- x.copy[1, i]

x.copy[2, i] ~ dnorm(z[2, i], 0.4444)

z[2, i] ~ dunif(-100, 100)

z[3, i] <- cut(z.star[i])

x.copy[3, i] ~ dnorm(z.star[i], 0.4444)

z.star[i] ~ dunif(-100, 100)

}

}

Model fits for the models with and without feedback are shown in Figure 9.6(b)
and Figure 9.6(c), respectively. Note that with feedback the zis are estimated
so that the regression line fits as well as possible. One danger of allowing this to
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happen is that the estimates may become implausible. Indeed, note that in this ex-
ample several of the zis are not ordered when feedback is allowed, e.g., posterior
median estimates for z3, z4, and z5 are 2.90, 5.59, and 3.40, respectively, al-
though there is considerable overlap between the 95% credible intervals: (0.844,
4.81), (2.85, 7.10), and (1.70, 5.98), respectively. It may be known that they
must be ordered, however. An ordering constraint could be applied in such cases,
as discussed in § 9.7.2, but there are numerous situations in which an obvious
constraint to ensure plausibility does not exist. The reader is referred to Lunn
et al. (2009a) for further discussion on difficulties with feedback. Without feed-
back, point estimates for the zis are approximately equal to the measured values,
xi = i, i = 1, . . . , n, but considerable uncertainty is acknowledged and this is
propagated into the regression analysis, manifesting as a wider credible interval
for the model fit compared to when the observed xis are assumed error-free.

model fit: mu[1,]
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FIGURE 9.6

Model fits for linear regression data, under various assumptions for the indepen-
dent variable: (a) xis assumed error-free, i.e., zi = xi; (b) fully Bayesian model
(with feedback); and (c) model without feedback. In (b) and (c), the model fits
are plotted against posterior mean estimates of the zis.
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9.5 New distributions

9.5.1 Specifying a new sampling distribution

Suppose we wish to use a sampling distribution that is not included in the list
of standard distributions, in which an observation yi contributes a likelihood
term Li. One possibility is the “zeros trick” based on the following.

We invent a set of observations zi = 0, each of which is assumed to be
drawn from a Poisson(φi) distribution. Each then has a likelihood contribution
exp(−φi), and so if φi is set to − log(Li), we will obtain the correct likelihood
contribution. (Note that φi should always be > 0 as it is a Poisson mean, and
so we may need to add a suitable constant to ensure that it is positive.) The
BUGS code will look like the following:

const <- 10000 # arbitrary, ensures phi[i] > 0

for (i in 1:n) {

z[i] <- 0

z[i] ~ dpois(phi[i])

phi[i] <- -log(L[i]) + const

L[i] <- ...

}

Li is set to a function of yi and θ proportional to the likelihood p(yi|θ). This
trick allows arbitrary sampling distributions to be used and is particularly
suitable when, say, dealing with truncated distributions (§9.6.2).

A new observation from the distribution, denoted yn+1, can be predicted
by including it as an additional, but missing, observation in the data file and
assigning it an improper uniform prior, e.g., y[n+1] ∼ dflat(), defining zi
and φi in the same way as before for i = n + 1. The missing observation is
essentially assumed to be an unknown parameter with a uniform prior, but
also with a likelihood term corresponding to the sampling distribution.

Note that the DIC (§8.6) for data from distributions specified using the zeros
trick, as reported by the WinBUGS or OpenBUGS DIC tool, is calculated with
respect to zi, not yi. Example 11.6.2 explains how to transform this to the
scale of yi, so it can be compared with the DICs of models for yi which are
specified using built-in sampling distributions.

Example 9.5.1. A clumsy way of modelling the normal distribution
We use the “zeros trick” to model a normal distribution with unknown mean μ
and unknown standard deviation σ, including predicting a new observation. We
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have seven observed values and one missing value as follows: y = c(-1, -0.3,

0.1, 0.2, 0.7, 1.2, 1.7, NA).

for (i in 1:8) {

z[i] <- 0

z[i] ~ dpois(phi[i])

phi[i] <- log(sigma) + 0.5*pow((y[i] - mu)/sigma, 2)

}

y[8] ~ dflat()

sigma ~ dunif(0, 100)

mu ~ dunif(-100, 100)

We must provide an initial value for y[8], via y = c(NA, NA, NA, NA, NA,

NA, NA, 0), say, otherwise BUGS will try to generate one from the improper
prior and crash.

node mean sd MC error 2.5% median 97.5% start sample

mu 0.365 0.4758 0.006864 -0.5948 0.3693 1.316 4001 10000

sigma 1.18 0.481 0.01139 0.6216 1.067 2.415 4001 10000

y[8] 0.3499 1.355 0.03415 -2.345 0.3564 3.095 4001 10000

Whilst the results match those that would be obtained in a standard analysis us-
ing y[i] ~ dnorm(mu, tau); tau <- 1/pow(sigma,2), this is an inefficient
procedure, particularly for the prediction, and so a long run is necessary. The MC
error for the prediction is 0.03 using the zeros trick and 0.01 for the same number
of iterations in the equivalent standard analysis.

An alternative to the “zeros trick” is the “ones trick.” Here we invent a set
of observations equal to 1 instead, and assume each to be Bernoulli distributed
with probability pi. By making each pi proportional to Li (i.e., by specifying a
scaling constant large enough to ensure pi < 1 for all i), the required likelihood
term is provided:

const <- 10000 # arbitrary, ensures p[i] < 1

for (i in 1:n) {

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- L[i]/const

}

We will illustrate use of the “ones trick” in §9.6.2, where we consider how to
specify truncated sampling distributions.

9.5.2 Specifying a new prior distribution

Suppose we want to use a prior distribution for θ that does not belong to the
standard set. Then we can use the “zeros trick” (see above) at the prior level
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combined with an improper uniform prior for θ. A single Poisson observation
equal to zero, with mean φ = − log(p(θ)), contributes a term exp(−φ) =
p(θ) to the likelihood for θ; when this is combined with a “flat” prior for θ
the correct prior distribution results. This is essentially the same process as
predicting from a new distribution covered in the previous section. Summary
BUGS code is

z <- 0

z ~ dpois(phi)

theta ~ dflat()

phi <- expression for -log(desired prior for theta)

For example, if we wished to produce a standard normal prior, we would use

phi <- 0.5*pow(theta, 2)

It is important to note that this method produces high auto-correlation, poor
convergence, and large MC errors, so it is computationally slow and long runs
are necessary. Initial values also need to be specified as the dflat() prior
cannot be sampled from using gen.inits.

New sampling distributions and new prior distributions can also be specified
in WinBUGS via the WinBUGS Development Interface (WBDev). This can
give big computational savings and clearer BUGS code, at the cost of “lower-
level” programming in Component Pascal — see § 12.4.8 for more details.
There are similar but less well-documented capabilities in OpenBUGS and
JAGS; see Chapter 12.

9.6 Censored, truncated, and grouped observations

9.6.1 Censored observations

A data point is a censored observation when we do not know its exact value,
but we do know that it lies above or below a point c, say, or within a specified
interval. The most common application is in survival analysis (§11.1), but here
we consider general measurement problems. There are two strategies within
BUGS:

1. In general, in WinBUGS we can use the I(,) construct (§A.2.2), which
specifies a restricted range within which the unknown quantity lies. The
unknown quantity is then simply treated as a model parameter. Note
that in OpenBUGS the C() function is preferred (see §12.5.1) and JAGS
uses a different syntax altogether (see §12.6.2).

2. Each exact observation y contributes p(y|θ) to the likelihood of θ,
whereas an observation censored at c provides a contribution of Pr(Y >
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c|θ) or Pr(Y < c|θ). Hence, if the distribution function can be expressed
in BUGS syntax, then we can use either the “ones trick” or the “zeros
trick” (§9.5) to directly specify the contribution of the censored obser-
vations to the likelihood.

Example 9.6.1. Censored chickens
Suppose we weigh nine chickens, with a scale that only goes up to 8 units, so
that if the scale shows 8 it means that the chicken weighs at least 8 units, which
we denote 8+. The weights are 6, 6, 6, 7, 7, 7, 8+, 8+, 8+. The population of
chickens is assumed to have weights that are normally distributed with mean μ
and standard deviation 1 unit. (This is not intended to be a realistic example — all
the observed weights are integer-valued and would more realistically be modelled
as roundings of a true continuous-valued weight, as in Example 9.6.3). If the 8+
weighings were exactly 8, and μ was assigned a locally uniform prior, then the
posterior distribution for μ would be Normal(7, 1/9). WinBUGS code accounting
for the censoring via method 1 above is

model {

for (i in 1:6) {y[i] ~ dnorm(mu, 1)} # uncensored data

for (i in 7:9) {y[i] ~ dnorm(mu, 1)I(8,)} # censored data

mu ~ dunif(0, 100)

}

data:

list(y = c(6,6,6,7,7,7,NA,NA,NA))

node mean sd MC error 2.5% median 97.5% start sample

mu 7.193 0.3478 0.003604 6.515 7.19 7.875 1001 10000

y[7] 8.571 0.4809 0.005356 8.018 8.446 9.805 1001 10000

We note that the posterior mean of μ is greater than 7 since the censored ob-
servations have been estimated to be between 8.0 and 9.8 — see Figure 9.7 for
the posterior density of censored observation y[7] (y[8] and y[9] also have the
same posterior). The posterior standard deviation of μ is 0.35, slightly greater
than if the data had been exact rather than censored — we can think of the
effective sample size having been reduced from 9 to 1/0.34782 = 8.3.

Now consider the second method outlined above, making use of the “zeros
trick.” Each censored observation provides a term Pr(Y > 8|μ) to the likelihood
of μ, which is equal to Pr(Y − μ > 8 − μ) = 1 − Φ(8 − μ) = Φ(μ − 8), where
Φ(.) is the cumulative distribution function of the standard normal distribution,
available in BUGS via the syntax phi(.):

for (i in 1:6) {y[i] ~ dnorm(mu, 1)}

for (i in 1:3) {

zeros[i] <- 0

zeros[i] ~ dpois(p[i])
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y[7] sample: 10000
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FIGURE 9.7

Posterior distribution for censored observation y[7] in the “censored chickens”
example.

p[i] <- -log(phi(mu-8))

}

mu ~ dunif(0, 100)

node mean sd MC error 2.5% median 97.5% start sample

mu 7.192 0.348 0.003687 6.519 7.185 7.882 1001 10000

We obtain largely the same results as with method 1, with similar Monte Carlo
standard errors. Method 2 is computationally more efficient, as the censored ob-
servations are integrated out before analysis. However, method 1 is more generally
applicable, as it does not require the distribution function to be known.

9.6.2 Truncated sampling distributions

A sampling distribution is truncated if for some reason we never observe
cases above or below a specified point, although in the permissible range of
observations the data follow a standard distribution. The sampling distribu-
tion must therefore be normalised to condition on lying in the permissible
range, say Y < c, so that the likelihood contribution of an observation y is
p(y|θ)/Pr(Y < c|θ). This will not generally be of standard form, and so ei-
ther a new distribution has to be defined (§12.4.8) or the “ones”/“zeros” trick
used (§9.5).

It is very important to realise that the I(,) construct is not appropriate for
truncated distributions with unknown parameters, since the generated likeli-
hood term will ignore the truncation and be incorrect (see Appendix A.2.2).
However, the I(,) construct can be used when specifying truncated prior
distributions with no unknown parameters — see Examples 5.3.2 and 6.3.1.

Example 9.6.2. Truncated chickens
In Example 9.6.1, suppose that any chicken weighing 8 or more units is sent back
to get more exercise, so the distribution of chicken weights is right-truncated at
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8. Therefore we only hear about the six chickens that weighed 6 or 7 units, and
each of these provides a likelihood contribution of exp[−(yi − μ)2/2]/Φ(c− μ).
So using the “ones trick”:

for (i in 1:6) {

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- exp(-0.5*(y[i] - mu)*(y[i] - mu))/phi(8 - mu)

}

mu ~ dunif(0, 100)

node mean sd MC error 2.5% median 97.5% start sample

mu 6.737 0.4965 0.00498 5.819 6.72 7.75 1001 10000

Although we don’t know how many chickens were weighed and returned, knowl-
edge of this truncation has raised the estimated population mean from the sample
mean of 6.5 to 6.74. The posterior standard deviation of 0.5 means that the ef-
fective sample size is 1/0.52 = 4, so the truncation has considerably reduced
the precision. Note that in this situation chickens weighing 8 or more units are
not included in the data collection process, whereas in the censoring example
(Example 9.6.1), while they may not be fully observed, they may still be present.

In JAGS, the T(,) construct may simply be used to truncate the sampling
distribution in the following way. JAGS computes the appropriate normalising
constant internally.

y[i] ~ dnorm(mu, 1)T(,8)

A similar general facility is planned in OpenBUGS but is only partially implemented
currently.

As may be apparent from the examples above, there are subtle differences
between truncation and censoring. Truncation is appropriate when values out-
side a given range are actually impossible. Censoring, on the other hand, is
appropriate when values beyond that range are possible in principle, but have
not been observed due to the nature of the measurement device/method —
that is, they may be observable using a different method.

9.6.3 Grouped, rounded, or interval-censored data

If observations are either grouped into categories or rounded, to the nearest
integer, say, the information provided by an observation is that it lies in a
particular interval, say (lower, upper). This can be treated as interval censor-
ing and handled by assuming we have a true but unobserved quantity z which
contributes to the likelihood for θ but we only know it lies between lower and
upper. This is specified using I(lower,upper).
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Example 9.6.3. Grouped chickens
Suppose all nine chickens in Example 9.6.1 have been weighed and reported as 6,
6, 6, 7, 7, 7, 8, 8, 8, but we know that when the scales report 7 units, say, the
true weight z could be anything between 6.5 and 7.5.

for (i in 1:9) {

lower[i] <- y[i] - 0.5

upper[i] <- y[i] + 0.5

z[i] ~ dnorm(mu, 1)I(lower[i], upper[i])

}

mu ~ dunif(0, 100)

node mean sd MC error 2.5% median 97.5% start sample

mu 7.001 0.3496 0.00364 6.322 7.003 7.692 1001 10000

z[1] 6.08 0.2778 0.002909 5.543 6.113 6.483 1001 10000

z[4] 6.993 0.2829 0.002573 6.527 6.991 7.474 1001 10000

z[7] 7.922 0.2759 0.002482 7.517 7.885 8.458 1001 10000

The posterior mean is 7, as might be expected from symmetric data, but the ef-
fective sample size is reduced from 9 to 1/0.352 = 8.2 by the grouping. The true
weight for a chicken reported as 6 is estimated to be 6.08, slightly “shrunk” to-
wards the mean by the assumption that the weights in the population are normally
distributed — see Figure 9.8.

z[1] sample: 10000
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z[4] sample: 10000
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z[7] sample: 10000
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FIGURE 9.8

Posterior density estimates for “true” chicken weights in the “grouped chickens”
example.
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9.7 Constrained parameters

9.7.1 Univariate fully specified prior distributions

A single parameter θ may be subject to a range constraint such as θ > 0.
Provided the distribution of θ does not contain any unknown parameters, then
this can be accommodated by using the I(,) construct (§9.6). For example,
a standard normal variable constrained to be positive is expressed as

theta ~ dnorm(0,1)I(0,)

See Examples 5.3.2 and 6.3.1. An alternative approach, which better gener-
alises to more complex constraints, is essentially an extension of the “ones
trick.” We introduce an auxiliary observation z taking the value 1. This is as-
sumed to arise from a Bernoulli distribution whose parameter takes the value
1 if the constraint is obeyed, and 0 otherwise. When sampling θ, only values
that obey the constraint, and therefore provide non-zero likelihood, will be
accepted, as illustrated in the example below.

Example 9.7.1. Half-normal
The code below shows the half-normal distribution being generated in two differ-
ent ways.

theta[1] ~ dnorm(0,1)I(0,)

theta[2] ~ dnorm(0,1)

z <- 1

z ~ dbern(constraint)

constraint <- step(theta[2])

The results show the substantially increased Monte Carlo error associated with
the auxiliary data method:

node mean sd MC error 2.5% median 97.5% start sample

theta[1] 0.8009 0.6106 0.006119 0.03056 0.6696 2.253 4001 10000

theta[2] 0.7897 0.5973 0.01643 0.02286 0.6743 2.206 4001 10000

9.7.2 Multivariate fully specified prior distributions

Order constraints on a series of parameters can be expressed using the I(,)

construct, provided the prior distribution does not contain unknown param-
eters. For example, to order a[1]<a[2]<a[3]:

a[1] ~ dnorm(0, 0.001)I(, a[2])

a[2] ~ dnorm(0, 0.001)I(a[1], a[3])

a[3] ~ dnorm(0, 0.001)I(a[2], )
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Or as in Example 7.3.1, a[2] and a[3] could be defined by adding positively
distributed increments to a[1] and a[2], respectively. In JAGS and Open-
BUGS, the elements of an unconstrained vector can also be sorted using the
sort() function, for example, b[1:3] <- sort(a[]).

The auxiliary data method can be used to impose more complex constraints,
as the following example shows.

Example 9.7.2. Doughnut: bivariate normal with a hole in it
Suppose we assume θi ∼ Normal(0, 1), i = 1, 2, but with the curious constraint
that θ21 + θ22 > 1. This can be generated using the following code.

theta[1] ~ dnorm(0, 1)

theta[2] ~ dnorm(0, 1)

z <- 1

z ~ dbern(constraint)

constraint <- step(theta[1]*theta[1] + theta[2]*theta[2] - 1)

theta[1]

   -4.0    -2.0     0.0     2.0     4.0

theta[2]

   -4.0

   -2.0

    0.0

    2.0

    4.0

FIGURE 9.9

Scatterplot showing 5000 samples from a bivariate normal distribution subject to
the constraint θ21 + θ22 > 1.

A scatterplot of 5000 simulations (Figure 9.9) shows a bivariate normal distri-
bution with a hole in the centre.

Additive constraints on parameters can be easily imposed by reparameteri-
sation. For example, if we require a set of parameters βi, i = 1, . . . , n, to sum
to 0, we can define each as βi = bi − b, where the bis are independent with
known prior distributions.
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Example 9.7.3. Bristol (continued): sum-to-zero constraint
We consider Example 8.3.1 as a logistic model:

yi ∼ Binomial(θi, ni), logit θi = α+ βi, i = 1, . . . , 12.

We allow each centre i to have its own effect parameter βi, but with the com-
monly imposed constraint that those parameters add to 0, in order to ensure
identifiability.

for (i in 1:12) {

y[i] ~ dbin(theta[i], n[i])

logit(theta[i]) <- alpha + beta[i]

beta[i] <- b[i] - mean(b[])

b[i] ~ dunif(-10,10)

}

alpha ~ dunif(-10,10)

Figure 9.10 shows a box plot of the beta[i]s from the above model. These are
identifiable, due to the sum-to-zero constraint, but the individual b[i]s are not.
Non-identifiable parameters can actually be introduced to improve convergence
in hierarchical models — see §10.5.
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box plot: beta
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FIGURE 9.10

Posterior summaries for centre effects beta[i] in the Bristol example.
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9.7.3 Prior distributions with unknown parameters

All of the parameter constraints considered thus far have taken a standard
prior distribution and truncated it. Those standard priors have also had fixed
parameters. Unfortunately, when the prior parameters are unknown, the I()

method for truncation does not work correctly in BUGS — it is simply a trick
for restricting the values sampled for a given node and only works in sim-
ple settings. In particular, the normalising constant for the truncation is not
accounted for when computing the likelihood contribution of the truncated
parameter(s) to the full conditional distribution(s) of the prior parameter(s).
In such cases, we have several alternative options, but as this issue is par-
ticularly relevant to hierarchical models, discussion of these is deferred until
§10.2.2.

9.8 Bootstrapping

As suggested in Chapter 2, BUGS can, in principle, be used to perform any
statistical procedure based on random sampling, which need not necessarily be
a Bayesian analysis. For example, we can implement classical nonparametric
bootstrap estimation as follows.

Example 9.8.1. Bootstrapping in BUGS: the Newcomb data
The Newcomb data have previously been considered as an illustration of model
elaboration for non-normal data (see Examples 8.2.1, 8.4.3, and 8.4.4). Carlin
and Louis (2008) point out that, given the outliers, a more robust analysis might
consider inference on the median rather than the mean of the distribution. If we
wish to avoid a parametric assumption about the shape of the distribution, then
we can adopt the basic bootstrap procedure of taking a series of repeat samples
with replacement and calculating the sample mean and median for each of these
repeats. This can be easily carried out in BUGS using the code below.

for (i in 1:N) {

p[i] <- 1/N # set up uniform prior on 1 to N

}

for (j in 1:N){

pick[j] ~ dcat(p[]) # pick random number between 1 and N

Yboot[j] <- Y[pick[j]] # set jth bootstrap observation

}

mean <- mean(Yboot[])

# now find median of bootstrap sample: this is halfway

# between observation N/2 and N/2+1...

n1 <- N/2
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n2 <- n1 + 1

median <- (ranked(Yboot[], n1) + ranked(Yboot[], n2))/2

We note how the discrete uniform prior distribution is set up and the use of
the dcat distribution to select a random observation. We monitor one of the
bootstrap elements Yboot[1]; its density in Figure 9.11 provides an approximate
sampling distribution for the data. The median has a discrete distribution with
median 27 and 95% interval 26.0 to 28.5 (the true value for the speed of light
would give 33, well outside the 95% bootstrap interval).

Yboot[1] sample: 100000

-45 -25 0 25

  0.0

0.05

  0.1

0.15

median sample: 100000

   24.0    26.0    28.0    30.0

    0.0
    2.0

    4.0

    6.0

    8.0

FIGURE 9.11

Empirical distributions for Yboot[1] and median based on 100,000 simulations.

9.9 Ranking

There is increasing attention to the profiling of schools, hospitals, and so on,
often resulting in institutions being ranked into a league table similar to sports
teams or competitors. Generally the rank is treated as a descriptive statistic,
but we can also think of the observed rank as an imperfect measure of the
“true rank” and perform statistical inference. This can be useful when we
want to assess the probability, for example, that a treatment that currently
looks best is truly the best treatment being examined.

The observed rank is a highly unreliable summary statistic since it can be
very sensitive to small changes in the data. Bayesian methods can provide
posterior interval estimates for ranks for which WinBUGS and OpenBUGS
contain “built-in” options.† rank(x[], i) returns the rank of the ith element

†In JAGS, rank(x[]) transforms a vector x into a vector of ranks, so that the equiva-

lent of rank(x[],i) is y <- rank(x[]); y[i]. The equivalent of ranked(x[], i) is y <-

sort(x[]); y[i].
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of x. equals(rank(x[],i),1) = 1 if the ith element of x has the lowest value,
and 0 otherwise; the mean is the probability that the ith element has the lowest
value. ranked(x[], i) returns the value of the ith-ranked element of x. The
Rank option of the Inference menu monitors the rank of each element of a
specified vector.

Example 9.9.1. Bristol (continued): ranking
Consider again the child heart surgery mortality rates introduced in Example 8.3.1.
Ignoring Bristol, we consider whether the variability in mortality rates between
hospitals allows any confident ranking. We assume the mortality in each hospital
is pi, i = 1, ..., N , with N = 11, which are assumed to have independent Jeffreys
Beta(0.5,0.5) priors. We would like to assess the true rank of each hospital and
the probability that each has the highest or lowest mortality.

for (i in 1:N) {

numbers1toN[i] <- i

p[i] ~ dbeta(0.5, 0.5)

r[i] ~ dbin(p[i], n[i])

hosp.rank[i] <- rank(p[], i) # rank of hospital i

prob.lowest[i] <- equals(hosp.rank[i], 1) # =1 if hosp i is lowest

prob.highest[i] <- equals(hosp.rank[i], N) # =1 if hosp i is highest

}

hosp.lowest <- inprod(numbers1toN[], prob.lowest[])

# index of lowest hosp

hosp.highest <- inprod(numbers1toN[], prob.highest[])

# index of highest hosp

The rank function produces the rank of each hospital at each iteration so that,
for example, hosp.rank[i] = 1 if hospital i currently has the lowest mortality
rate p[i]. prob.lowest[i] will then be 1 at that iteration, and so the mean
of prob.lowest[i] will provide the probability that hospital i is the “safest”
hospital.

We note the “which is min/max” trick used to pick out the index of, say, the
lowest hospital: prob.lowest[] is a vector of zeros except for a 1 in the position
of the hospital with the lowest p at that iteration; by taking an inner-product∑

i i*prob.lowest[i], hosp.lowest takes on the value equal to the index of
the hospital currently ranked lowest.

The upper panel of Figure 9.12 shows that there are substantial posterior prob-
abilities (0.71 and 0.68, respectively) of hospital 2 being the “safest” (with the
lowest mortality) and hospital 3 being the “least safe”: these are hospitals 3 and 4
in the original data table in Example 8.3.1. The lower panel illustrates that there
is considerable uncertainty regarding each hospital’s rank, however.
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hosp.lowest sample: 10000
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FIGURE 9.12

Top: Posterior histograms for the hospital with the lowest (left) and highest (right)
mortality. Bottom: Box plot comparing hospital-specific posterior ranks.




