Uniform prior...
model {
Y N
for (j in 1:M) {
p[j] <- step(N - j + 0.01)/N
}
N ~ dcat(p.unif[])
for (j in 1:M) {
p.unif[j] <- 1/M
}
}
Data:
list(M = 5000)
node mean sd MC error 2.5% median 97.5% start sample
N 1274.0 1295.0 10.86 109.0 722.0 4579.0 1001 10000
Jeffreys prior...
model {
Y N
for (j in 1:M) {
p[j] <- step(N - j + 0.01)/N
}
N ~ dcat(p.jeffreys[])
for (j in 1:5000) {
reciprocal[j] <- 1/j
p.jeffreys[j] <- reciprocal[j]/sum.recip
}
sum.recip <- sum(reciprocal[])
}
Data:</span
list(M = 5000)
node mean sd MC error 2.5% median 97.5% start sample
N 408.7 600.4 4.99 102.0 197.0 2372.0 1001 10000
Larger upper bound, M...</span
model {
Y N
for (j in 1:M) {
p[j] <- step(N - j + 0.01)/N
}
N ~ dcat(p.jeffreys[])
for (j in 1:15000) {
reciprocal[j] <- 1/j
p.jeffreys[j] <- reciprocal[j]/sum.recip
}
sum.recip <- sum(reciprocal[])
}
Data:</span
list(M = 15000 )
node mean sd MC error 2.5% median 97.5% start sample
N 520.2 1146.0 9.852 102.0 200.0 3434.0 1001 10000