model {
for (i in 1:23) {
y[i] ~ dt(mu[i], tau, dof)
mu[i] <- beta0 + beta[1]*MAN[i]
}
beta0 ~ dnorm(0, 0.0001)
beta[1] ~ dnorm(0, 0.0001)
tau <- 1/pow(sigma, 2)
sigma ~ dunif(0, 100)
sd <- sigma*sqrt(dof/(dof-2))
dummy <- AUTO[1] + DIST[1]
}
Inits:
list(beta0 = 0, beta = c(0), sigma = 1)
Data:
list(dof = 4)
Data:
MAN[] AUTO[] y[] DIST[]
-15.76 1.09 3.19 1
0.98 0.62 -3.45 1
3.71 0.61 0.04 1
-5.37 -1.01 6.62 1
-10.23 -0.76 3.61 1
-8.32 1.91 2.67 1
-7.80 0.40 -2.45 1
6.77 -1.71 9.31 1
-8.81 -0.76 15.29 1
-9.56 -1.34 3.68 1
-2.06 -1.71 8.63 2
-0.76 -1.82 10.82 2
-6.30 -4.91 -0.50 2
39.40 -2.65 -11.00 2
-10.79 0.11 2.05 2
-8.16 0.52 11.80 2
-2.82 -2.54 -2.02 2
-16.19 -0.07 0.94 3
-11.00 -0.83 4.42 3
-14.60 0.98 -0.86 3
-17.96 -3.41 -0.92 3
0.76 2.97 2.61 3
-10.77 2.92 1.58 3
END
node mean sd MC error 2.5% median 97.5% start sample beta[1] -0.1244 0.1449 0.002557 -0.358 -0.1455 0.2097 5001 10000 beta0 1.699 1.632 0.02879 -1.191 1.59 5.222 5001 10000 sd 6.905 1.463 0.02551 4.619 6.726 10.2 5001 10000 sigma 4.883 1.035 0.01803 3.266 4.756 7.214 5001 10000
![]() |
![]() |