model {
for(j in 1:N) {
for (i in 1:4) {
y[i,j] ~ dnorm(mu[i,j], tau[i])
}
mu[1,j] <- Linf[1] - (Linf[1] - L0[1])*exp(-K[1]*x[1,j])
mu[2,j] <- Linf[2] - (Linf[2] - L0[2])*exp(-K[2]*x[2,j])
mu[3,j] <- alpha[3] - beta[3]*pow(gamma[3], x[3,j])
mu[4,j] <- alpha[4] - beta[4]*pow(gamma[4], x[4,j])
}
L0[1] ~ dunif(0, 100)
L0[2] ~ dnorm(0, 0.0001)I(0, Linf[2])
Linf[1] <- L0[1] + beta[1]
Linf[2] ~ dnorm(0, 0.0001)I(L0[2], )
K[1] ~ dunif(0, 100)
K[2] ~ dunif(0, 100)
for (i in 1:2) {alpha[i] <- Linf[i]}
for (i in 3:4) {alpha[i] ~ dunif(0, 100)}
beta[1] ~ dunif(0, 100)
beta[2] <- Linf[2] - L0[2]
for (i in 3:4) {beta[i] ~ dunif(0, 100)}
for (i in 1:2) {gamma[i] <- exp(-K[i])}
gamma[3] ~ dunif(0, 1)
gamma[4] ~ dgamma(0.001, 0.001)I(0, 1)
for (i in 1:4) {
tau[i] <- 1/sigma2[i]
log(sigma2[i]) <- 2*log.sigma[i]
log.sigma[i] ~ dunif(-10, 10)
}
}
Inits:
list(alpha = c(NA, NA, 3, 3), beta = c(2, NA, 2, 2), gamma = c(NA, NA, 0.9, 0.9), K = c(0.1, 0.1), Linf = c(NA, 3), L0 = c(1, 1), log.sigma = c(-5, 0, -5, -5))
Data:
list(x = structure(
.Data = c(1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0,
8.0, 8.5, 9.0, 9.5, 9.5, 10.0, 12.0, 12.0, 13.0,
13.0, 14.5, 15.5, 15.5, 16.5, 17.0, 22.5, 29.0, 31.5,
1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0,
8.0, 8.5, 9.0, 9.5, 9.5, 10.0, 12.0, 12.0, 13.0,
13.0, 14.5, 15.5, 15.5, 16.5, 17.0, 22.5, 29.0, 31.5,
1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0,
8.0, 8.5, 9.0, 9.5, 9.5, 10.0, 12.0, 12.0, 13.0,
13.0, 14.5, 15.5, 15.5, 16.5, 17.0, 22.5, 29.0, 31.5,
1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0,
8.0, 8.5, 9.0, 9.5, 9.5, 10.0, 12.0, 12.0, 13.0,
13.0, 14.5, 15.5, 15.5, 16.5, 17.0, 22.5, 29.0, 31.5),
.Dim = c(4, 27)),
y = structure(
.Data = c(1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47,
2.19, 2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43,
2.47, 2.56, 2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57,
1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47,
2.19, 2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43,
2.47, 2.56, 2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57,
1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47,
2.19, 2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43,
2.47, 2.56, 2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57,
1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47,
2.19, 2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43,
2.47, 2.56, 2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57),
.Dim = c(4, 27)), N = 27)
node mean sd MC error 2.5% median 97.5% start sample alpha[1] 2.65 0.07281 0.001407 2.527 2.644 2.809 10001 50000 alpha[2] 2.651 0.07263 0.001245 2.529 2.644 2.814 10001 50000 alpha[3] 2.656 0.07748 0.001929 2.532 2.647 2.829 10001 50000 alpha[4] 2.654 0.07424 0.001737 2.528 2.647 2.819 10001 50000 beta[1] 0.9751 0.07746 0.001512 0.8275 0.9736 1.129 10001 50000 beta[2] 0.9747 0.07807 6.402E-4 0.8263 0.9733 1.129 10001 50000 beta[3] 0.9759 0.07796 0.001022 0.828 0.9744 1.135 10001 50000 beta[4] 0.9759 0.07727 9.129E-4 0.8288 0.9742 1.132 10001 50000 gamma[1] 0.8607 0.03351 7.849E-4 0.7833 0.8646 0.9146 10001 50000 gamma[2] 0.8613 0.03373 5.879E-4 0.7845 0.8651 0.9161 10001 50000 gamma[3] 0.8632 0.03293 7.05E-4 0.7892 0.8665 0.9189 10001 50000 gamma[4] 0.8623 0.03386 6.953E-4 0.7839 0.8662 0.917 10001 50000 sigma2[1] 0.009987 0.003213 2.702E-5 0.005568 0.009403 0.01791 10001 50000 sigma2[2] 0.009961 0.003191 2.136E-5 0.005532 0.009387 0.01774 10001 50000 sigma2[3] 0.009973 0.003169 2.552E-5 0.005552 0.009384 0.01777 10001 50000 sigma2[4] 0.009975 0.003194 2.505E-5 0.005582 0.009389 0.01786 10001 50000