model {
for (i in 1:8) {
y[i] ~ dbin(p[i], n[i])
logit(p[i]) <- alpha + beta*(x[i] - mean(x[]))
phat[i] <- y[i]/n[i]
yhat[i] <- n[i]*p[i]
}
alpha ~ dnorm(0, 0.0001)
beta ~ dnorm(0, 0.0001)
}
Data:
list(x = c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.8610, 1.8839),
n = c(59, 60, 62, 56, 63, 59, 62, 60),
y = c(6, 13, 18, 28, 52, 53, 61, 60))
Inits:
list(alpha = 50, beta = 0)
node mean sd MC error 2.5% median 97.5% start sample alpha 0.7478 0.1377 0.001263 0.4806 0.7466 1.024 1001 10000 beta 34.58 2.928 0.03235 29.12 34.51 40.58 1001 10000 p[1] 0.05907 0.01592 1.598E-4 0.03296 0.0574 0.09385 1001 10000 p[2] 0.1636 0.0279 2.604E-4 0.1134 0.1622 0.2218 1001 10000 p[3] 0.361 0.03381 2.828E-4 0.2948 0.3608 0.428 1001 10000 p[4] 0.6052 0.03133 2.72E-4 0.5417 0.6056 0.6657 1001 10000 p[5] 0.7955 0.02616 2.637E-4 0.742 0.7959 0.8445 1001 10000 p[6] 0.9031 0.01861 2.01E-4 0.8636 0.9043 0.9363 1001 10000 p[7] 0.9548 0.01173 1.3E-4 0.9289 0.956 0.9745 1001 10000 p[8] 0.9786 0.006963 7.81E-5 0.9628 0.9795 0.9897 1001 10000 yhat[1] 3.485 0.9391 0.009426 1.945 3.387 5.537 1001 10000 yhat[2] 9.815 1.674 0.01563 6.805 9.732 13.31 1001 10000 yhat[3] 22.38 2.096 0.01753 18.28 22.37 26.53 1001 10000 yhat[4] 33.89 1.755 0.01523 30.33 33.91 37.28 1001 10000 yhat[5] 50.11 1.648 0.01661 46.75 50.14 53.2 1001 10000 yhat[6] 53.29 1.098 0.01186 50.95 53.35 55.24 1001 10000 yhat[7] 59.2 0.727 0.008062 57.59 59.27 60.42 1001 10000 yhat[8] 58.72 0.4178 0.004686 57.77 58.77 59.38 1001 10000
![]() |
![]() |