model {
for (i in 1:8) {
y[i] ~ dbin(p[i], n[i])
logit(p[i]) <- alpha + beta*(x[i] - mean(x[]))
phat[i] <- y[i]/n[i]
yhat[i] <- n[i]*p[i]
}
alpha ~ dnorm(0, 0.0001)
beta ~ dnorm(0, 0.0001)
ED95 <- (logit(0.95) - alpha)/beta + mean(x[])
}
Data:
list(x = c(1.6907, 1.7242, 1.7552, 1.7842, 1.8113, 1.8369, 1.8610, 1.8839),
n = c(59, 60, 62, 56, 63, 59, 62, 60),
y = c(6, 13, 18, 28, 52, 53, 61, 60))
Inits:
list(alpha = 50, beta = 0)
node mean sd MC error 2.5% median 97.5% start sample ED95 1.857 0.007755 1.342E-5 1.843 1.857 1.874 1 500000 alpha 0.7499 0.1386 2.241E-4 0.4829 0.7482 1.027 1 500000 beta 34.58 2.931 0.004637 29.07 34.5 40.56 1 500000