Adaptive designs for time-to-event trials

Dominic Magirr1, Thomas Jaki1, Franz König2 and Martin Posch2

1Department of Mathematics and Statistics, Lancaster University
2Institut für Medizinische Statistik, Medical University of Vienna

January 2014
Outline

Motivating example

Adaptive methods

Ignored data
Lung cancer trial (Schäfer and Müller, 2001)

- Patients randomized to “Radiotherapy + Chemotherapy” (E) or “Chemotherapy” (C)
- Median survival on C ≈ 14 months
- Anticipated survival on E ≈ 20 months
- Sample size: 255 deaths ($\alpha = 0.025$, $\beta = 0.2$)
- Exponential model ... this could be achieved with 40 months recruitment and 20 months min follow-up.
40 months into the trial...

(a) patient recruitment was much slower than expected
 – only 136 patients had been randomized
(b) the hazard rate had been over-estimated in the planning
 – only 56 deaths had been observed

Recommendation of Schäfer and Müller:
“abandon the trial because there [is] no chance of achieving the planned sample size within a reasonable time”
Counterproposal of study group

- Look at the data to see if there is a larger treatment effect than originally anticipate.
- If so, reduce the initially planned sample size (required number of events).
- Larger the observed treatment effect → earlier the study ends.
Reverse scenario (Irle & Schäfer, 2012)

- Look at data to see if there is a smaller than anticipated treatment effect.
- If so, increase the sample size (required number of events) to give a better chance of achieving a statistically significant result.

Standard analysis will not control the type I error rate...
Adaptive design with immediate responses

E.g., under H_0,

$$\frac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_1(X_1^{\text{int}}) \right\} + \frac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_2(Y) \right\} \sim \mathcal{N}(0, 1)$$
Adaptive design with delayed responses

\[
\frac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_1(X_1^{\text{int}}) \right\} + \frac{1}{\sqrt{2}} \Phi^{-1} \left\{ 1 - p_2(Y) \right\} \sim \mathcal{N}(0, 1)
\]
When is this valid?

✓ Interim decision strategy based solely on (primary endpoint) treatment effect estimate.

✗ Interim decisions are based on partial information from patients who are yet to provide full primary endpoint response e.g. second-stage sample size is chosen on basis of progression-free survival when primary endpoint is overall survival.
Potential solution

\[
\frac{1}{\sqrt{2}} \Phi^{-1} \{1 - p_1(X_1)\} + \frac{1}{\sqrt{2}} \Phi^{-1} \{1 - p_2(Y)\} \sim \mathcal{N}(0, 1)
\]

E.g., Liu & Pledger (2005) – Gaussian responses
Schmidli, Bretz & Racine-Poon (2007) – Binary responses
Extra problem with time-to-event endpoint?
Jenkins, Stone & Jennison (2011); Irle & Schäfer (2012)

• Must pre-specify end of follow-up of first-stage patients, T_1, in definition of p_1.

• Otherwise, $p_1(X_1) \sim U[0, 1]$ under H_0, and type I error may be inflated.
Data is “thrown away”

• Final test decision only depends on a subset of the recorded survival times; part of the observed data is ignored.
• Particularly damaging if long-term survival is of most concern (it is the survival times of earliest recruited patients that is ignored).
• Therefore, we investigated the effect of naïvely incorporating this illegitimate data into the final test statistic...
Adaptive log-rank test

“Correct” adaptive test statistic

\[Z^{\text{CORRECT}} = w_1 L_1(T_1) + w_2 \Phi^{-1}(1 - p_2) \]

“Naïve” adaptive test statistic

\[Z^{\text{NAIVE}} = w_1 L_1(T^*) + w_2 \Phi^{-1}(1 - p_2) \]

- \(L_1(t) \) is the log-rank statistic based on Stage 1 patients, followed up until calendar time \(t \).
- \(w_i \) are explicitly (Jenkins et al.) or implicitly (Irle & Schäfer) fixed weights with \(w_1^2 + w_2^2 = 1 \).
- \(T_1 \) is the (implicitly) fixed end of first-stage follow up.
- \(T^* \) is the time of final analysis (dependent on interim decisions).
Worst-case assumption

- The null distribution of Z^{CORRECT} is $\mathcal{N}(0, 1)$.
- The null distribution of Z^{NAIVE} is completely unknown.
- However, we can look at the stochastic process

$$Z(t) = w_1 L_1(t) + w_2 \Phi^{-1}(1 - p_2), \quad t \in [T_1, T^{\text{max}}].$$

Worst-case: the interim data (PFS, early endpoints, etc) can be used to predict exactly when $L_1(t)$ reaches its maximum.
Upper bound on type I error

An upper bound can be found assuming second-stage design is engineered such that T^* coincides with $\arg \max L_1(t)$:

$$\max \alpha = P_{H_0} \left\{ \max_{t \geq T_1} w_1 L_1(t) + w_2 \Phi^{-1}(1 - p_2) > 1.96 \right\}$$

$$= \ldots$$

$$\approx \int_0^1 P_{H_0} \left[\max_{u=u_1} B(u) > \sqrt{u} \frac{1.96 + w_2 \Phi^{-1}(x)}{w_1} \right] \, dx,$$

with $u_1 = \{\# \text{ stage 1 deaths at } T_1\} / \{\# \text{ stage 1 deaths at } T^{\max}\}$
Figure: Worst case type I error for various choices of weights and information fractions.
Irle & Schäfer example revisited

- Original trial design:
 - 248 deaths; 40 months recruitment; 20 months min follow-up.

- Interim analysis after 23 months:
 - 190 patients recruited; 60 deaths.
 - Treatment effect in terms of PFS less impressive than expected.
 - Decision made to increase required number of deaths from 248 to 400.

- At calendar time $T_1 \approx 60$ months:
 - 170 first-stage patient deaths; 78 second-stage patient deaths.
 - $u_1 = 170/190; w_1 = \sqrt{170/248}; \text{max } \alpha = 0.040.$
Guaranteed level-α test

Simply increase cut-off such that $P_{H_0} \{ \max_{t \geq T_1} Z(t) \geq k^* \} = \alpha$.

In assessing the effect on power, four relevant probabilities are:

A. $P_{\theta = \theta_R} \left(Z^{\text{CORRECT}} > 1.96 \right)$
B. $P_{\theta = \theta_R} \left(Z^{\text{CORRECT}} > k^* \right)$
C. $P_{\theta = \theta_R} \left\{ Z(T^{\text{max}}) > k^* \right\}$
D. $P_{\theta = \theta_R} \left\{ \max_{t \geq T_1} Z(t) > k^* \right\}$
Figure: Conditional power as defined by A (thin line), B (medium line), C (thick line) and D (dashed line) given p_2, under two scenarios.

(a): $u_1 = 170/190$, $w_1 = (170/248)^{1/2}$ and $\theta_R = 0.36$.
(b): $u_1 = 147/288$, $w_1 = (147/248)^{1/2}$ and $\theta_R = 0.36$.
Conclusion: methods trade-off

<table>
<thead>
<tr>
<th></th>
<th>Type I control</th>
<th>Informed interim decisions</th>
<th>All survival times in test</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Independent increments"</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>"Correct" adaptive</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>"Naïve" adaptive</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>"Naïve" + k*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Other research avenue: use joint distribution of, e.g., PFS and overall survival.
References

