Some connections between permutation tests and t-tests and their relevance for adaptive designs

Ekkehard Glimm¹, Michael Proschan², Martin Posch³
¹Novartis Pharma, Basel, Switzerland
²National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
³Medical University of Vienna, Vienna, Austria

MRC Hub Network workshop "Adaptive designs for clinical trials"
Cambridge, 27 January 2014
Outline

- Permutation tests
 - one-sample case
 - two-sample case
- Connection with t-test and rotation tests
- Application to adaptive designs: sample size reestimation
Permutation test: one-sample case

Basic idea in the one-sample case:

- H_0: no difference between treatment and control
- D_i denotes differences between a treatment and a control measurement on a patient
- Assign $Z_i = +1$ or -1 w.p. $\frac{1}{2}$ to each observation d_i of D_i
- Go through all 2^n possibilities and calculate $T_i^* = \sum_{i=1}^{n} Z_i d_i$
- The 2^n values of T_i^* constitute the conditional empirical null distribution $F(T_i)$ of $T_i = \sum_{i=1}^{n} Z_i D_i$ given $D_i = d_i$
- p-value of the test: percentage of $T_i^* \geq \sum_{i=1}^{n} d_i$.
- For n large, approximate $F(T_i)$ by a random subsample.
One-sample permutation test asymptotics

- \(E(T_i) = 0; \) \(\text{var}(T_i) = \sum_{i=1}^{n} d_i^2 \) under \(H_0 \)
- By the Lindeberg-Feller-theorem,
 \[
 \tilde{T} = \frac{\sum_{i=1}^{n} Z_i D_i}{\sqrt{\sum_{i=1}^{n} D_i^2}}
 \]
 is asymptotically \(N(0,1) \)-distributed.
- \(\tilde{\sigma}^2 = \sum_{i=1}^{n} D_i^2 / n \) is the \textit{total variance} = variance under \(H_0 \)
- \(\tilde{\sigma}^2 \) and \(\tilde{T} \) are asymptotically stochastically independent.
One-sample permutation test with normal data

- If D_i are independent, normally distributed, then

\[
\tilde{T} = \frac{\sum_{i=1}^{n} Z_i D_i}{\sqrt{\sum_{i=1}^{n} D_i^2}} \sim \pm \frac{1}{2} \sqrt{n \cdot \text{Beta}(\frac{1}{2}, \frac{n-1}{2})}.
\]

- Can be proved in many ways.

- Most intuitive proof is given on the next slide.

\[\pm \frac{1}{2} \sqrt{n \cdot \text{Beta}(\frac{1}{2}, \frac{n-1}{2})}\] is shorthand for the distribution where

\[\frac{\tilde{T}^2}{n} \sim \text{Beta}(\frac{1}{2}, \frac{n-1}{2})\]

- For \tilde{T} and $-\tilde{T}$, the density takes the same value.
One-sample permutation test with normal data

- \((D_1, \ldots, D_n)\) given \(\sum_{i=1}^{n} D_i^2 = r^2\) has a uniform distribution on the \(n\)-dimensional sphere with radius \(r\).

- Since this holds for all values of \(\sum_{i=1}^{n} D_i^2 = r^2\), and since \(Z_i D_i\) and \(D_i\) are equally distributed, \(\frac{\sum_{i=1}^{n} Z_i D_i}{\sqrt{\sum_{i=1}^{n} D_i^2}}\) and \(\sum_{i=1}^{n} D_i^2\) are stochastically independent.

- \(\tilde{T} = \frac{\sum_{i=1}^{n} Z_i D_i}{\sqrt{\sum_{i=1}^{n} D_i^2}}\) has the distribution of the sum of coordinates of vectors distributed uniformly on the \(n\)-dimensional unit sphere.

- Unique characterization of the distribution:
 \[
 \frac{1}{n} \tilde{T}^2 \sim Beta\left(\frac{1}{2}, \frac{n-1}{2}\right)
 \]
 and for \(+\tilde{T}\) and \(-\tilde{T}\) the density takes the same value.
One-sample permutation and t-test

- A more common representation is in terms of the well-known t-test statistic:

\[t = \sqrt{n - 1} \left(n \cdot (\pm \bar{t}^{-2}) - 1 \right)^{-\frac{1}{2}} \sim t(n - 1) \]
Rotation test

- rotation test: approximate the distribution of \tilde{T} by
 - fixing $\sum_{i=1}^{n} D_i^2 = r^2$ to its observed value
 - randomly rotate the vector (d_1, \ldots, d_n)
 =
 multiply (d_1, \ldots, d_n) with an orthonormal matrix Q where all orthonormal matrices have equal probability.
 For example for $n=2$:
 - generate θ from uniform distribution on $[0, 2\pi]$
 - Let $d_1 = r \cdot \cos(\theta)$ and $d_2 = r \cdot \cos(\theta)$.
Permutation test: two-sample case

- H_0: no difference between treatment and control
- X_i observation from patient i (in treatment or control group)
- For simplicity: $n/2$ patients per group
- To each observation x_i, assign $Z_i = +1$ or -1 w.p. $\frac{1}{2}$
- Restriction $\sum_{i=1}^{n} Z_i = 0$
- Go through all $\binom{n}{2}$ possibilities and calculate $T_i^* = \sum_{i=1}^{n} Z_i x_i$

⇒ Only difference in comparison with one-sample case: restriction $\sum_{i=1}^{n} Z_i = 0$
Two-sample permutation test asymptotics

- Conditional on observed $X_i = x_i$, $T_i = \sum_{i=1}^{n} Z_i X_i$ has
- $E(T_i) = 0; \text{var}(T_i) = \frac{n}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = n\tilde{\sigma}^2$ under H_0
- Again,
 - $\tilde{T} = \frac{\sum_{i=1}^{n} Z_i X_i}{\sqrt{n\tilde{\sigma}^2}}$ is asymptotically $N(0,1)$-distributed
 - $\tilde{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ is the "total" variance = variance under H_0
 - \tilde{T} and $\tilde{\sigma}^2$ are asymptotically stochastically independent
Two-sample permutation test: normal data

By a similar argument as for the one-sample case, if $X_i \sim N(\mu, \sigma^2)$ i.i.d.

- $\tilde{T} = \frac{\sum_{i=1}^{n} Z_i X_i}{\sqrt{n\tilde{\sigma}^2}} \sim \pm \frac{1}{2} \sqrt{n \cdot \text{Beta}(\frac{1}{2}, \frac{n-1}{2})}$, i.e. corresponding to the uniform distribution on an $(n - 1)$-dimensional sphere
- \tilde{T} and $\tilde{\sigma}^2$ are stochastically independent.

For the case of unequal sample sizes n_T and n_C, analogous results (asymptotic in general and exact for normal data) are obtained by using

$$Z_i = \begin{cases} \frac{1}{n_T} & \text{w.p. } \frac{n_T}{n_T + n_C} \\ \frac{-1}{n_C} & \text{w.p. } \frac{n_C}{n_T + n_C} \end{cases}$$
Relevance to adaptive designs

- One-sample test with an interim (normally distributed data):
 - A trial with n_1 patients recruited in stage 1, and then some more.
 - After n_1 patients, do an **interim analysis** and change the sample size, based on the total variance $\tilde{\sigma}^2 = \sum_{i=1}^{n_1} D_i^2 / n_1$
 - For example, the new total sample size may be based on the usual power formula $n(\tilde{\sigma}^2) = \frac{\tilde{\sigma}^2 (\Phi^{-1}(1-\alpha) + \Phi^{-1}(1-\beta))}{\delta^2}$; α type I error, β type II error, δ assumed difference treatment-control, $\Phi^{-1}(.)$ standard normal quantile.
 - Let t_i be the usual one-sample t-test statistic, calculated from stage-i data only.
 - Under H_0: No treatment effect, \tilde{T} and $\tilde{\sigma}^2$ are stoch. independent $\Rightarrow t_1$ and $n(\tilde{\sigma}^2)$ stoch. independent $\Rightarrow t_1$ and t_2 stoch. independent
p-value combinations

- Let \(n_2 = n(\bar{s}^2) - n_1 \) and \(p_i \) be the \(p \)-value corresponding to \(t_i \).
- We can combine the \(p \)-values to test \(H_0 \). Possible rules:
 - \(f(p_1, p_2) = -\log(p_1 p_2) \) (Fisher's combination rule)
 - \(g(p_1, p_2) = \sqrt{\frac{n_1}{n_1+n_2}} \Phi^{-1}(1 - p_1) + \sqrt{\frac{n_2}{n_1+n_2}} \Phi^{-1}(1 - p_2) \) (conditional inverse normal rule)

Note that \(g(p_1, p_2) \) is NOT the usual inverse normal \(p \)-value combination rule (Lehmacher and Wassmer, 1999)

\[
g^*(p_1, p_2) = w_1 \Phi^{-1}(1 - p_1) + w_2 \Phi^{-1}(1 - p_2),
\]

where \(w_1, w_2 \) must be fixed before sample size reassessment based on an "anticipated" stage-2-sample size.
Adaptive tests

- Rejection rules: Reject H_0 (no treatment benefit) if
 - $f(p_1, p_2) \geq \chi^2_{4,1-\alpha}$
 - $g(p_1, p_2) \geq \Phi^{-1}(1 - \alpha)$
 - $g^*(p_1, p_2) \geq \Phi^{-1}(1 - \alpha)$
 - "naive" t-test: $t \geq t_{n_1+n_2-1,1-\alpha}$, where t is the usual t-test statistic, calculated as if no sample size calculation after stage 1.

- Can be shown that the naive t-test does not keep the type I error in general
 - however, this is hardly detectable in simulations.
Power simulations

![Graph showing power of various adaptive tests when true difference = 0.1, n1=30 and sample size calculated from total variance to retain 80% power](image)
Discussion of power simulations

- $g(p_1, p_2)$ performs a good deal better than both $g^*(p_1, p_2)$ and $f(p_1, p_2)$.

- $g(p_1, p_2)$ performs almost identical as the "naive" t-test (treating n as if it had been fixed from the trial start).

- $g(p_1, p_2)$ is only valid because the sample size re-estimation rule is based on the total variance $\bar{\sigma}^2$ only.

- $g^*(p_1, p_2)$ and $f(p_1, p_2)$ are more generally applicable.
Conclusions

- There is a **close relation** between resampling and *t*-tests.
- Since permutation tests condition on all data except the treatment indicator, we can use them **after having looked at the data** in an interim analysis (with only the treatment indicator hidden).
- Sample size modification based on the total variance alone allows the use of **more powerful p-value-combination methods**.
- All of this is about testing a **strong null hypothesis** of no treatment benefit (in particular: equal variance in the two groups)
References

