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BUGS Dugongs: nonlinear growth curve

Carlin and Gelfand (1991) present a nonconjugate Bayesian analysis of the following data set
from Ratkowsky (1983):

Dugong |1 2 3 4 5 .. 26 27
Age ) |10 15 15 15 25 .. 290 315
Length (Y) |1.80 1.85 1.87 1.77 202 .. 227 257

The data are length and age measurements for 27 captured dugongs (sea cows). Carlin and
Gelfand (1991) model this data using a nonlinear growth curve with no inflection point and an
asymptote as X; tends to infinity:

Y; ~ Normal(w;,7), i=1,..27

g =o-pyN o,p>1;0<y<1

Standard noninformative priors are adopted for o, B and t, and a uniform prior on (0,1) is
assumed for y. However, this specification leads to a non conjugate full conditional distribution
for y which is also non log-concave. The graph and corresponding BUGS code is given below

CONNCIENC
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for(i IN 1 : N)
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Dugongs

model
{
for(iin1:N){
Y[i] ~ dnorm(mul[i], tau)
muli] <- alpha - beta * pow(gamma,x(i])

}
alpha ~ dnorm(0.0, 1.0E-6)
beta ~ dnorm(0.0, 1.0E-6)
gamma ~ dunif(0.5, 1.0)
tau ~ dgamma(0.001, 0.001)
sigma <- 1/ sqrt(tau)
U3 <- logit(gamma)

}

Data ( click to open )

Inits ( click to open)

Results

Examples Volume Il

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc median val97.5pc start
us 1.861 0.2678 0.01189 1.321 1.865 2.37 1001
alpha 2.652 0.07094 0.003378 2.532 2.646 2.808 1001
beta 0.9729 0.07649 0.001806 0.8251 0.9711 1.129 1001
gamma 0.8623 0.03259 0.001393 0.7894 0.8658 0.9145 1001
sigma 0.0992 0.01496 1.831E-4 0.07513 0.09742 0.1339 1001
model

for(iin1:N){

Y[i] ~ dnorm(mul[i], tau)
muli] <- alpha - beta * pow(gamma,Xx(i])
}
alpha ~ dnorm(0.0, 1.0E-6)
beta ~ dnorm(0.0, 1.0E-6)
logit(gamma) <- U3
tau ~ dgamma(0.001, 0.001)
sigma <- 1/ sgrt(tau)
U3 ~ dnorm(0, 1.0E-4)
}

list(alpha = 1, beta = 1, tau = 1, U3 = 0)

mean sd MC_error val2.5pc median val97.5pc start
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us
alpha
beta
gamma
sigma

1.912
2.665
0.9753
0.8684
0.09871

0.2609

0.07564
0.07757
0.02941
0.01474

0.01072
0.002835
0.00325
0.00123
2.373E-4

1.415
2.544
0.8274
0.8046
0.07482

1.904
2.655
0.9752
0.8704
0.09716

[4]

2.459
2.848
1.132
0.9212
0.1321

2001
2001
2001
2001
2001

9000
9000
9000
9000
9000

Dugongs
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BUGS Orange Trees: Non-linear growth curve

This dataset was originally presented by Draper and Smith (1981) and reanalysed by Lindstrom
and Bates (1990). The data Yjj consist of trunk circumference measurements recorded at time x;,
i=1,...,7 foreach of i = 1,..., 5 orange trees. We consider a logistic growth curve as follows:

Yij ~ Normal(njj, tc)

nj = 0i

T+0i2exp(0i3x)

0i1 = log(di1)
Oig = log(¢i2+1)
0i3 = log(-¢i3)

The BUGS code is as follows

model {
for (i in 1:K) {
for (jin 1:n){
Y[i, j] ~ dnorm(etali, j], tauC)
eta[i, j] <- phifi, 1]/ (1 + phi[i, 2] * exp(phi[i, 3] * x[i]))
}
phi[i, 1] <- exp(theta[i, 1])
phi[i, 2] <- exp(thetali, 2]) - 1
phi[i, 3] <- -exp(theta[i, 3])
for (kin 1:3) {
theta(i, k] ~ dnorm(mul[k], tau[k])
} }
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1/ sqrt(tauC)
varC <- 1 /tauC
for (kin 1:3) {
mul[k] ~ dnorm(0, 1.0E-4)
tau[k] ~ dgamma(1.0E-3, 1.0E-3)
sigmalk] <- 1 / sqrt(tau[k])
}
}
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Data ( click to open )

Inits ( click to open )

Results

The hybrid Metropolis algorithm is used to sample the theta parameters in this model. The step
length used for this algorithm adapts for the first 4000 iterations and these samples are
discarded from the summary statistics. A further 1000 update burn-in followed by 10000
updates gave the following parameter estimates:

mean sd MC_error val2.5pc median val97.5pc start sample
mu[1] 5.257 0.1279 0.002334 5.002 5.256 5.505 5001 10000
mu[2] 2.211 0.1277 0.004119 1.965 2.209 2.469 5001 10000
mu[3] -5.869 0.1091 0.004242 -6.113 -5.861 -5.676 5001 10000
sigma[1] 0.2332 0.1357 0.00204 0.08448 0.204 0.5494 5001 10000
sigma[2] 0.1383 0.1147 0.003672 0.02607 0.1078 0.4207 5001 10000
sigma(3] 0.1012 0.08341 0.002777 0.02317 0.07675 0.3234 5001 10000
sigmaC 8.065 1.244 0.03079 6.014 7.93 10.92 5001 10000

The current point Metropolis algorithm is used to sample the theta parameters in this model. The
Gaussian proposal distribution used for this algorithm adapts for the first 4000 iterations and
these samples are discarded from the summary statistics. A further 1000 update burn-in
followed by 10000 updates gave the following parameter estimates:

mean sd MC_error val2.5pc median val97.5pc start sample
mu[1] 5.254 0.1242  0.004513 5.002 5.258 5.488 5001 10000
mu[2] 2.22 0.1252  0.007917 1.994 2.216 2.469 5001 10000
mu[3] -5.861 0.1143  0.008563 -6.098 -5.86 -5.657 5001 10000
sigma[1] 0.2245  0.1235 0.00357 0.07706 0.1963 0.5306 5001 10000
sigma[2] 0.1342 0.1219  0.005743 0.02447 0.1009  0.4428 5001 10000
sigma[3] 0.1098  0.09349 0.005828 0.02354 0.08214 0.3591 5001 10000
sigmaC 8.025 1.216 0.03895 6.03 7.89 10.77 5001 10000
theta[1,1]  5.079 0.08832 0.007158 4.949 5.066 5.326 5001 10000
theta[1,2] 2.134 0.1542  0.01001 1.823 2.136 2.423 5001 10000
theta[1,3] -5.851 0.149 0.0126  -6.19 -5.849 -5.583 5001 10000
theta[2,1]  5.395 0.05096 0.003465 5.3 5.393 5.505 5001 10000
theta[2,2]  2.207 0.1245  0.008209 1.962 2.205 2.46 5001 10000
theta[2,3] -5.825 0.1015  0.007943 -6.028 -5.828 -5.624 5001 10000
theta[3,1] 5.079 0.09932 0.008296 4.945 5.06 5.356 5001 10000
theta[3,2] 2.187 0.1351 0.008393 1.915 2.188 2.447 5001 10000
theta[3,3] -5.908 0.1494  0.01298 -6.286 -5.89 -5.666 5001 10000
theta[4,1]  5.441 0.04836 0.003287 5.347 5.442 5.543 5001 10000
theta[4,2] 2.269 0.1395  0.009928 2.024 2.256 2.566 5001 10000
theta[4,3] -5.816 0.1021 0.008087 -6.008 -5.825 -5.591 5001 10000
theta[5,1] 5.291 0.06828 0.005157 5.174 5.284 5.438 5001 10000
theta[5,2] 2.299 0.1351 0.009323 2.05 2.295 2.589 5001 10000
theta[5,3] -5.907 0.1075  0.008937 -6.125 -5.903 -5.7 5001 10000
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BUGS Orange Trees: Non-linear growth curve

We repeat the Otrees example, replacing the 3 independent univariate Normal priors for each ¢
ik, kK=1,2,3 by a multivariate Normal prior ¢ j ~ MNV(u, T)

model {
for (i in 1:K) {
for (jin 1:n) {
Y[i, j] ~ dnorm(etali, j], tauC)
etali, j] <- phili, 11/ (1 + phi[i, 2] * exp(phi[i, 3] * x[j]))
}
phi[i, 1] <- exp(theta[i, 1])
phi[i, 2] <- exp(thetali, 2]) - 1
phi[i, 3] <- -exp(theta][i, 3])
theta[i, 1:3] ~ dmnorm(mul[1:3], tau[1:3, 1:3])
}
mu[1:3] ~ dmnorm(mean([1:3], prec[1:3, 1:3))
tau[1:3, 1:3] ~ dwish(R[1:3, 1:3], 3)
sigma2[1:3, 1:3] <- inverse(tau[1:3, 1:3])
for (i in 1 : 3) {sigma]i] <- sqrt(sigmaZ2]i, i]) }
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1/ sqrt(tauC)

Data ( click to open )

INits ( click to open)

Results

A 4000 iteration Metropolis adaptive phase plus 1000 update burn in followed by a further 10000
updates gave the parameter estimates:
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mean sd MC_error val2.5pc median val97.5pc start sample
mu[1] 5.265 0.1351 0.001577 4.992 5.263 5.537 5001 10000
mu[2] 2.2 0.1656  0.002555 1.874 2.197 2.522 5001 10000
mu[3] -5.88 0.141 0.002287 -6.171 -5.877 -5.614 5001 10000
sigma[1] 0.2581 0.1145  0.001681 0.1268  0.231 0.558 5001 10000
sigma[2] 0.2679  0.1291 0.002343 0.1191 0.2368  0.5925 5001 10000
sigma([3] 0.2296  0.1101 0.001523 0.1085 0.2036  0.5048 5001 10000
sigmaC 7.853 1.19 0.02499 5.923 7.715 10.53 5001 10000
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BUGS Biopsies: discrete variable latent class model

Spiegelhalter and Stovin (1983) presented data on repeated biopsies of transplanted hearts, in
which a total of 414 biopsies had been taken at 157 sessions. Each biopsy was graded on
evidence of rejection using a 4 category scale of none (O), minimal (M), mild (+) and moderate-
severe (++). Part of the data is shown below.

Combination Multinomial response Session frequency
0O (2,0,0,0) 12
M MO (1,2,0,0) 10
++ O (1,0,2,0) 17

++ ++ ++ (0,0,0,3) 5

The sampling procedure may not detect the area of maximum rejection, which is considered the
true underlying state at the time of the session and denoted t; --- the underlying probability

distribution of the four true states is denoted by the vector p. It is then assumed that each of the
observed biopsies are conditionally independent given this truestate with the restriction that there
are no false positives': i.e. one cannot observe a biopsy worse than the true state. We then have
the sampling model

b; ~ Multinomial(ey;, n)

t; ~ Categorical(p)

where bj denotes the multinomial response at session i/ where n; biopsies have been taken, and
ejk is the probability that a true state tj = j generates a biopsy in state k.The no-false-positive
restriction means that eo = €43 = €14 = €03 = €94 = €34 = 0. Spiegelhalter and Stovin (1983)
estimated the parameters e; and p using the EM algorithm, with some smoothing to avoid zero
estimates.

The appropriate graph is shown below, where the role of the true state tj is simply to pick the

appropriate row from the 4 x 4 error matrix e. Here the probability vectors gj (j = 1,...,4) and p are
assumed to have uniform priors on the unit simplex, which correspond to Dirichlet priors with all
parameters being 1.

The BUGS code for this model is given below. No initial values are provided for the latent states,
since the forward sampling procedure will find a configuration of starting values that is
compatible with the expressed constraints. We also note the apparent “"cycle" in the graph
created by the expression nbiopsJi] <- sum(biopsies]i,]). This will lead Such “cycles" are

[9]
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Biopsies

permitted provided that they are only data transformation statements, since this does not affect
the essential probability model.

model

{

for (iin 1 : ns){

nbiops][i] <- sum(biopsies]i, ])
truefi] ~ dcat(pl[])
biopsies|i, 1 : 4] ~ dmulti(errortrueli], ], nbiopsi])

}

error[2,1 : 2] ~ ddirch(prior[1 : 2])
error[3,1 : 3] ~ ddirch(prior[1 : 3])
error[4,1 : 4] ~ ddirch(prior[1 : 4])
p[1 : 4] ~ ddirch(prior(]);

Data ( click to open )

Inits ( click to open)

Results

# prior for p

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

error[2,1]
error[2,2]
error[3,1]
error[3,2]
error[3,3]
error[4,1]
error[4,2]
error[4,3]
error[4,4]
p[1]
p[2]
p[3]
p[4]

mean
0.5875
0.4125
0.342
0.03729
0.6207
0.09933
0.02225
0.2037
0.6747
0.1529
0.3109
0.3892
0.1471

sd
0.0663
0.0663
0.04584
0.01782
0.04782
0.04218
0.02302
0.06101
0.07271
0.04962
0.0549
0.0437
0.0298

MC_error
0.001731
0.001731
7.001E-4
2.503E-4
7.253E-4
5.187E-4
3.867E-4
9.381E-4
0.001124
0.001503
0.00144
6.675E-4
3.433E-4

val2.5pc
0.4557
0.286
0.256
0.009585
0.5222
0.03382
5.186E-4
0.1013
0.5228
0.04877
0.216
0.3055
0.094

median
0.5884
0.4116
0.3403
0.03488
0.622
0.09397
0.01488
0.1984
0.6792
0.1551
0.3066
0.3879
0.1448

[10]

val97.5pc start

0.714
0.5444
0.4363
0.07774
0.7107
0.1968
0.08594
0.3374
0.8044
0.2459
0.4323
0.4775
0.2106

1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

sample
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
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BUGS Eyes: Normal Mixture Model

Bowmaker et al (1985) analyse data on the peak sensitivity wavelengths for individual
microspectrophotometric records on a small set of monkey's eyes. Data for one monkey (S14 in
the paper) are given below (500 has been subtracted from each of the 48 measurements).

29.0 30.0 32.0 33.1 334 33.6 33.7 34.1 34.8 353
354 359 36.1 36.3 364 36.6 37.0 374 375 38.3
385 38.6 394 39.6 404 408 42.0 42.8 43.0 435
43.8 439 453 46.2 48.8 48.7 48.9 49.0 49.4 499
50.6 51.2 514 515 51.6 52.8 529 532

Part of the analysis involves fitting a mixture of two normal distributions with common variance to
this distribution, so that each observation yj is assumed drawn from one of two groups. Tj=1, 2

be the true group of the i th observation, where group j has a normal distribution with mean A; and

precision . We assume an unknown fraction P of observations are in group 2, 1 - P in group 1.
The model is thus

yi ~ Normal(ATj, 7)

T; ~ Categorical(P).

We note that this formulation easily generalises to additional components to the mixture, although
for identifiability an order constraint must be put onto the group means.

Robert (1994) points out that when using this model, there is a danger that at some iteration, all
the data will go into one component of themixture, and this state will be difficult to escape from ---

this matches our experience. obert suggests a re-parameterisation, a simplified version of
which is to assume

}L2 =k1+6, 0 > 0.

A1, 0, T, P, are given independent ""noninformative" priors, including a uniform prior for P on (0,1).
The appropriate graph and the BUGS code are given below.

[11]
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name: theta type: stochastic density: dnorm
mean 0.0 precision 1.0E-6 upper bound 0 upper bound

lambda[1]

<«—| alphal]

e

for(i IN 1 : N)

model
{
for(iin1:N){
y[i] ~ dnorm(muli], tau)
muli] <- lambda[TT[i]]
T[i] ~ dcat(P[])
}
P[1:2] ~ ddirch(alphal])
theta ~ dnorm(0.0, 1.0E-6)I(0.0, )
lambda[2] <- lambda[1] + theta
lambda[1] ~ dnorm(0.0, 1.0E-6)
tau ~ dgamma(0.001, 0.001) sigma <- 1/ sqrt(tau)

Data ( click to open )

Inits ( click to open)

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

[12]



Eyes

P1]

P2]
lambda[1]
lambda[2]
sigma

mean
0.6014
0.3986
536.8
548.9
3.805

sd
0.08981
0.08981
1.023
1.388
0.726

MC_error val2.5pc
0.002305 0.4267
0.002305 0.2299

0.03708
0.03856
0.03322

535.0
546.0
2.932

median
0.602
0.398
536.7
548.9
3.652

[13]

val97.5pc start

0.7701 1001
0.5733 1001
539.0 1001
551.3 1001
6.014 1001

Examples Volume Il

sample
10000
10000
10000
10000
10000
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BUGS

The table below presents data given by Berry (1987) on the effect of a drug used to treat patients

Hearts: a mixture model for count data

with frequent premature ventricular contractions (PVCs) of the heart.

PVC's per minute
number (i) Pre-drug (xj)  Post-drug (y;) Decrease
1 6 5 1
2 9 2 7
3 17 0 17
11 9 13 -4
12 51 0 51

Farewell and Sprott (1988) model these data as a mixture distribution of Poisson counts in which
some patients are "cured" by the drug, whilst others experience varying levels of response but
remain abnormal. A zero count for the post-drug PVC may indicate a "cure", or may represent a
sampling zero from a patient with a mildly abnormal PVC count. The following model thus is

assumed:

xi ~ Poisson(Aj) forall patients
yi ~ Poisson(BA;) forall uncured patients
P(cure) = 6

To eliminate nuisance parameters li, Farewell and Sprott use the conditional distribution of yi
given ti = xi + yi. This is equivalent to a binomial likelihood for yi with denominator ti and
probability p = b /(1+b) (see Cox and Hinkley, 1974 pp. 136-137 for further details of the
conditional distribution for Poisson variables). Hence the final mixture model may be expressed

as follows:

P(yi=01t)
P(yi | 1)

0+(1-06)(1-p)t
(1-6) (t!/ (! (t-y)!)) (pYi (1~ p) (=YD

yi=1,2,...1;

The BUGS code for this model is given below:

model
{
for (iin1:N){
y[i] ~ dbin(P[state1[i]], t[i])
state[i] ~ dbern(theta)

[14]



Hearts

state1[i] <- state[i] + 1
ti] <- x{i] + y{i]
prop[i] <- P[state1[i]]
}
P[1]<-p
P[2] <- 0
logit(p) <- alpha
alpha ~ dnorm(0,1.0E-4)
beta <- exp(alpha)
logit(theta) <- delta
delta ~ dnorm(0, 1.0E-4)

Data ( click to open )
Inits ( click to open)

Results

Examples Volume Il

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc
alpha -0.4809 0.2795 0.002701 -1.044
beta 0.6427 0.1812 0.001765 0.3521
delta 0.3144 0.6177 0.006344 -0.8919
theta 0.5717 0.1391 0.001417 0.2907

median
-0.4767
0.6208
0.3124
0.5775

[15]

val97.5pc start

0.0652 1001
1.067 1001
1.553 1001
0.8253 1001

sample
10000
10000
10000
10000
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BUGS Air: Berkson measurement error

Whittemore and Keller (1988) use an approximate maximum likelihood approach to analyse the
data shown below on reported respiratory illness versus exposure to nitrogen dioxide (NOy) in

103 children. Stephens and Dellaportas (1992) later use Bayesian methods to analyse the same
data.

Bedroom NO, levelin ppb (z)
Respiratory illness (y) <20 20--40 40+ Total

Yes 21 20 15 56
No 27 14 6 47
Total 48 34 21 103

A discrete covariate z (j = 1,2,3) representing NO2 concentration in the child's bedroom

classified into 3 categories is used as a surrogate for true exposure. The nature of the
measurement error relationship associated with this covariate is known precisely via a
calibration study, and is given by

X =0 +PzZ+gj

where o = 4.48, = 0.76 and ¢; is a random element having normal distribution with zero mean

and variance 62 (= 1/1) = 81.14. Note that this is a Berkson (1950) model of measurement error,
in which the true values of the covariate are expressed as a function of the observed values.
Hence the measurement error is independent of the latter, but is correlated with the true
underlying covariate values. In the present example, the observed covariate z; takes values 10,

30 or 50 forj=1, 2, or 3 respectively (i.e. the mid-point of each category), whilst x; is interpreted
as the "true average value" of NO» in group j. The response variable is binary, reflecting
presence/absence of respiratory illness, and a logistic regression model is assumed. That is

y; ~ Binomial(pj, n;)
logit(pj) = 061 + 02X

where pj is the probability of respiratory illness for children in the jth exposure group. The
regression coefficients 61 and 62 are given vague independent normal priors. The graphical
model is shown below:

[16]
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tau

model

{
for(jin 1 :J){

forIN1 :J)

y{il ~ dbin(p(j], nfj])

logit(p[j]) <- theta[1] + theta[2] * X][j]

X[j] ~ dnorm(mul[j], tau)

mu[j] <- alpha + beta * Z[j]

}

theta[1] ~ dnorm(0.0, 0.001)
theta[2] ~ dnorm(0.0, 0.001)

}

Data (click to open)

Inits  ( click to open)

Results

Examples Volume Il

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates
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X[1]
X[2]
X[3]
theta[1]

mean
12.92
27.21
40.85
-0.9628

sd
7.877
7.473
8.721
1.0

MC_error val2.5pc

0.4227
0.1946
0.3502
0.08808

-3.775
13.05
24.18
-4.233

median
13.3
27.01
40.84
-0.7183

Re-parameterised model with centred covariates:

model

{

for(jin1:J){

}

thetaO ~ dnorm(0.0,0.001)
theta[2] ~ dnorm(0.0,0.001)

y{il ~ doin(p(i],n[j])

val97.5pc start

26.96 1001
42.63 1001
58.37 1001
0.2104 1001

logit(p[j]) <- thetaO+ theta[2] * (X[j] - mean(mul[]))
X[j] ~ dnorm(mul[j],tau)

mul[j] <- alpha + beta * Z]j]

theta[1] <- thetaO - theta[2] * mean(mul[])

}

Inits ( click to open)

Results

Air

sample
10000
10000
10000
10000

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates, with
over-relaxation.

X[1]
X[2]
X[3]
theta[1]

mean
13.27
27.28
41.03
-0.9269

sd
8.04
7.455
8.468

MC_error val2.5pc

0.4047
0.1798
0.2267
0.05205

-3.199
12.69
25.39
-3.068

median
13.57
27.2
40.83
-0.7581

[18]

val97.5pc start

28.24 1001
42.06 1001
58.25 1001

0.206 1001

sample
10000
10000
10000
10000
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BUGS Cervix: case - control study with errors in
covariates

Carroll, Gail and Lubin (1993) consider the problem of estimating the odds ratio of a disease d
in a case-control study where the binary exposure variable is measured with error. Their example
concerns exposure to herpes simplex virus (HSV) in women with invasive cervical cancer (d=1)
and in controls (d=0). Exposure to HSV is measured by a relatively inaccurate western blot
procedure w for 1929 of the 2044 women, whilst for 115 women, it is also measured by a refined
or "gold standard" method x. The data are given in the table below. They show a substantial
amount of misclassification, as indicated by low sensitivity and specificity of w in the "complete"
data, and Carroll, Gail and Lubin also found that the degree of misclassification was significantly
higher for the controls than for the cases (p=0.049 by Fisher's exact test).

d X w Count
Complete data
1 0 0 13
1 0 1 3
1 1 0 5
1 1 1 18
0 0 0 33
0 0 1 11
0 1 0 16
0 1 1 16

Incomplete data

0 318
1 375
0 701
1 535

—_ -

They fitted a prospective logistic model to the case-control data as follows

di ~ Bernoulli(pj)) i=1,...,2044
logit(pi) = Poc+ BX i=1,...,2044

where f is the log odds ratio of disease. Since the relationship between d and x is only directly

observable in the 115 women with "complete" data, and because there is evidence of differential
measurement error, the following parameters are required in order to estimate the logistic model

[19]



Examples Volume lI Cervix

01,1 = P( 0)

012 = P( 1)

021 = P(w=1|x=1,d=0)

22 = P(w=1]|x=1,d=1)
q = P(

The differential probability of being exposed to HSV (x=1) for cases and controls is calculated as
follows

Y1 =  P(x=1]d=1)

= P(d=1|x=1) P(x=1)

P(d=1)

= 1 1-q

1+ (1 +expBoc + B)/ (1 + exp Boc) q
Y = P(x=1]d=0)

= P(d=0| x=1) P(x=1)

P(d=0)

= 1 1-q

T+ (1+exp—oc—P)/(1+exp—-Poc) a
The BUGS code is given below. The role of the variables x1 and d1 is to pick the appropriate
value of ¢ (the incidence of w) for any given true exposure status x and disease status d. Since x
and d take the values 0 or 1, and the subscripts for ¢ take values 1 or 2, we must first add 1 to
each x[i] and d[1i] in the BUGS code before using them as index values for ¢. BUGS does not
allow subscripts to be functions of variable quantities --- hence the need to create x1and d1 for
use as subscripts. In addition, note that yy and y2 were not simulated directly in BUGS, but were
calculated as functions of other parameters. This is because the dependence of y1 and y2 on d
would have led to a cycle in the graphical model which would no longer define a probability
distribution.

model
{
for (iin 1 :N) {
x[i] ~ dbern(q) # incidence of HSV
logit(p[i]) <- betaOC + beta * x[i]  # logistic model
d[i] ~ dbern(p[i]) # incidence of cancer
x1[i] <- x[i] + 1
d1[i] <-d[i] + 1

[20]
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w(i] ~ dbem(phi[x1[i], d1[i]])

}
q

for(jin1:2){

~ dunif(0.0, 1.0)
betaOC ~ dnorm(0.0, 0.00001);
beta ~ dnorm(0.0, 0.00001);

for(kin 1 :2){
phifj, k] ~ dunif(0.0, 1.0)

}
}

# calculate gamma1i = P(x=1|d=0) and gamma2 = P(x=1|d=1)

# incidence of w

# prior distributions

Examples Volume Il

gammal <-1/(1 + (1 + exp(beta0C + beta)) / (1 + exp(betaOC)) * (1 -q)/q)
gamma2 <- 1 /(1 + (1 + exp(-beta0C - beta)) / (1 + exp(-beta0C)) * (1-q)/q)

}

Data ( click to open )

Inits ( click to open)

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean
beta0C -0.9265
gammai 0.4371
gamma2 0.5969

phi[1,1] 0.3177
phi[1,2] 0.2138
phi[2,1] 0.5694
phi[2,2] 0.7623
q 0.4943

sd
0.207
0.05431
0.06438
0.05363
0.08148
0.06434
0.06328
0.04017

MC_error val2.5pc median

0.01102

0.002994
0.003332
0.002669
0.004308
0.002928
0.003054
0.002071

-1.357 -0.9144
0.3286 0.4372
0.4727 0.5948
0.2142 0.3187
0.07201 0.209

0.4461 0.5696
0.6371 0.7643
0.4135 0.494

Re-parameterised model with centred covariates:

model

{

for (iin 1 :N) {
X[i] ~ dbern(q)

val97.5pc start

-0.5501
0.5451
0.731
0.4168
0.3849
0.691
0.8789
0.5728

# incidence of HSV

1001
1001
1001
1001
1001
1001
1001
1001

sample
10000
10000
10000
10000
10000
10000
10000
10000

logit(p[i]) <- betal + beta * (x[i] - mean(w([])) # logistic model
d[i] ~dbern(p[i])
x1[i] <- X[i] + 1
d1[i] <-d[i] + 1

w[i] ~ dbern(phi[x1[i], d1[i])

}
q

~ dunif(0.0, 1.0)

# incidence of cancer

# incidence of w

# prior distributions

[21]
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betaO ~ dnorm(0.0, 0.00001);
beta ~ dnorm(0.0, 0.00001);
for(jin1:2){
for(kin 1 :2){
phi[j, k] ~ dunif(0.0, 1.0)
}
}

# calculate gamma1l = P(x=1|d=0) and gamma2 = P(x=1|d=1)
gammal <-1/(1 + (1 + exp(beta0C + beta)) / (1 + exp(betaOC)) * (1 -q)/q)
gamma2 <- 1 /(1 + (1 + exp(-beta0C - beta)) / (1 + exp(-beta0C)) * (1-q)/q)

betaOC <- beta0 - mean(w[]) * beta

}

Inits ( click to open)

mean sd MC_error val2.5pc
beta0C -0.921 0.2036  0.0114  -1.327
gammal 0.4389  0.05766 0.003321 0.3274
gammaz2 0.5964  0.0635 0.003451 0.4721
phi[1,1] 0.318 0.05831 0.003108 0.2003
phi[1,2] 0.221 0.08396 0.004839 0.0738
phi[2,1] 0.5664  0.0666  0.003198 0.4325
phi[2,2] 0.7585  0.06472 0.003465 0.6282
q 0.4953  0.04198 0.002285 0.4138

median
-0.9178
0.4396
0.5967
0.319
0.2146
0.5682
0.7603
0.4953

[22]

val97.5pc start

-0.5276
0.5513
0.719
0.4263
0.3988
0.6918
0.8797
0.5773

1001
1001
1001
1001
1001
1001
1001
1001

sample
10000
10000
10000
10000
10000
10000
10000
10000

Cervix
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W ,

BUGS Birats: a bivariate normal hierarchical model

We return to the Rats example, and illustrate the use of a multivariate Normal (MVN) population
distribution for the regression coefficients of the growth curve for each rat. This is the model
adopted by Gelfand etal (1990) for these data, and assumes a priori that the intercept and slope
parameters for each rat are correlated. For example, positive correlation would imply that initially
heavy rats (high intercept) tend to gain weight more rapidly (steeper slope) than lighter rats. The
model is as follows

Yij ~ Normal(uij, tc)
Hij = B1i+Baix
Bi ~ MVN(ug, Q)

where Yij; is the weight of the ith rat measured at age X, and B; denotes the vector (31j, B2j). We
assume 'non-informative' independent univariate Normal priors for the separate components
g4 and pug,. A Wishart(R, p) prior was specified for Q, the population precision matrix of the

regression coefficients. To represent vague prior knowledge, we chose the the degrees of
freedom p for this distribution to be as small as possible (i.e. 2, the rank of Q). The scale matrix
was specified as

R= | 200, O |
| 0, 02 |

This represents our prior guess at the order of magnitude of the covariance matrix Q-1 for B;

(see Classic BUGS manual (version 0.5) section on Multivariate normal models), and is
equivalent to the prior specification used by Gelfand et al. Finally, a non-informative
Gamma(0.001, 0.001) prior was assumed for the measurement precision t¢.

[23]
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Omegal, ]

g

prec[, ]

¢

betali, 1:2]

@ muli, j]

J

/ ~
Come> b

forGIN1:T)

xil

for(i IN 1 : N)

model
{
for(iin1:N){
beta[i, 1 : 2] ~ dmnorm(mu.beta[], R[, ])
for(jin1:T){
YI[i, j] ~ dnorm(muli , j], tauC)
muli, j] <- beta[i, 1] + betali, 2] * X[j]
}
}

mu.beta[1 : 2] ~ dmnorm(mean(], prec[ , 1)
R[1:2,1:2] ~dwish(Omega[, ], 2)
tauC ~ dgamma(0.001, 0.001)

sigma <- 1/ sgrt(tauC)

Data ( click to open )
Inits ( click to open)

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

[24]
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mu.beta[1]
mu.beta[2]
sigma

mean
106.6
6.185
6.136

sd
2.35
0.1062
0.4781

MC_error val2.5pc median

0.0335 101.8
0.001351 5.981
0.009095 5.283

106.6
6.185
6.1

[25]

val97.5pc start

111.2 1001
6.397 1001
7.137 1001

Examples Volume Il

sample
10000
10000
10000
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W ,

BUGS Schools: ranking school examination results
using multivariate hierarcical models

Goldstein et al. (1993) present an analysis of examination results from inner London schools.
They use hierarchical or multilevel models to study the between-school variation, and calculate
school-level residuals in an attempt to differentiate between "good' and "bad' schools. Here we
analyse a subset of this data and show how to calculate a rank ordering of schools and obtain
credible intervals on each rank.

Data

Standardized mean examination scores (Y) were available for 1978 pupils from 38 different
schools. The median number of pupils per school was 48, with a range of 1--198. Pupil-level
covariates included gender plus a standardized London Reading Test (LRT) score and a verbal
reasoning (VR) test category (1, 2 or 3, where 1 represents the highest ability group) measured
when each child was aged 11. Each school was classified by gender intake (all girls, all boys or
mixed) and denomination (Church of England, Roman Catholic, State school or other); these
were used as categorical school-level covariates.

Model

We consider the following model, which essentially corresponds to Goldstein et al.'s model 1.

Yij ~ Normal(uj, Tij)

Wj = oaqj+agLRTj+ag3j VRij+B1 LF{Tij2 + B2 VR2jj + B3 Girl
+ B4 Girls' school; + 5 Boys' school; + Bg CE school;
+ 7 RC school; + Bg other school;

logtj = 0+¢LRTj

where i refers to pupil and j indexes school. We wish to specify a regression model for the
variance components, and here we model the logarithm of tj; (the inverse of the between-pupil

variance) as a linear function of each pupil's LRT score. This differs from Goldstein et al.'s model
which allows the variance 2 to depend linearly on LRT. However, such a parameterization may

lead to negative estimates of 63;;.

Prior distributions

The fixed effects Bk (k=1,...,8), 6 and ¢ were assumed to follow vague independent Normal
distributions with zero mean and low precision = 0.0001. The random school-level coefficients

[26]



Schools Examples Volume I

akj (k =1,2,3) were assumed to arise from a multivariate normal population distribution with
unknown mean y and covariance matrix £. A non-informative multivariate normal prior was then
specified for the population mean vy, whilst the inverse covariance matrix T = £-1 was assumed
to follow a Wishart distribution. To represent vague prior knowledge, we chose the the degrees
of freedom for this distribution to be as small as possible (i.e. 3, the rank of T). The scale matrix
R was specified as

0.1 0.005 0.005
0.005 0.01 0.005
0.005 0.005 0.01

which represents our prior guess at the order of magnitude of X.
The BUGS code is given below:

model
{
for(pin 1 :N) {
Y[p] ~ dnorm(mufp], tau[p])
mulp] <- alpha[school[p], 1] + alpha[school[p], 2] * LRT[p]
+ alpha[school[p], 3] * VR[p, 1] + beta[1] * LRT2[p]
+ betal2] * VR[p, 2] + beta[3] * Gender[p]
+ beta[4] * School.gender[p, 1] + beta[5] * School.gender|p, 2]
+ beta[6] * School.denom[p, 1] + beta[7] * School.denom[p, 2]
+ beta[8] * School.denom[p, 3]
log(tau[p]) <- theta + phi * LRT[p]
sigma2[p] <- 1/ tau[p]
LRT2[p] <- LRT[p] * LRT[p]
}
min.var <- exp(-(theta + phi * (-34.6193))) # lowest LRT score = -34.6193
max.var <- exp(-(theta + phi * (37.3807))) # highest LRT score = 37.3807

# Priors for fixed effects:
for (kin1:8){
betalk] ~ dnorm(0.0, 0.0001)
}
theta ~ dnorm(0.0, 0.0001)
phi ~ dnorm(0.0, 0.0001)

# Priors for random coefficients:
for (jin 1 : M) {
alphalj, 1 : 3] ~dmnorm(gamma[1:3 ], T[1:3 ,1:3 ]);
alpha1[j] <- alphalj,1]
}

# Hyper-priors:
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gamma[1 : 3] ~ dmnorm(mn[1:3 ]
T[1:3,1:3]~dwish(R[1:3,1:3]
}

, prec[1:3,1:3));
,3)

Data ( click to open )

Note that school is a 1978 x 3 matrix taking value 1 for all pupils in school 1, 2 for all pupils in
school 2 and so on. For computational convenience, Y, mu and tau are indexed over a single

dimension p = 1,...,1978 rather than as pupil i within school j as used in equations above. The
appropriate school-level coefficients for pupil p are then selected using the school indicator in
row p of the data array --- for example alpha [school [p], 1].

Inits ( click to open)

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc median val97.5pc start sample
beta[1] 2.64E-4 9.842E-5 2.429E-6 7.499E-5 2.638E-4 4.558E-4 1001 10000
beta[2] 0.4219 0.06225 0.00344 0.301 0.4206 0.5466 1001 10000
beta[3] 0.1725 0.04834 0.001427 0.07689 0.1722 0.2682 1001 10000
beta[4] 0.125 0.1377 0.006001 -0.1558 0.1276 0.3939 1001 10000
beta[5] 0.06201 0.1038 0.004941 -0.1475 0.06323 0.2624 1001 10000
beta[6] -0.2769  0.1875 0.007158 -0.6584 -0.2728 0.08729 1001 10000
beta[7] 0.1441 0.1061 0.004271 -0.05912 0.1428 0.36 1001 10000
beta[8] -0.1667  0.1733 0.006393 -0.4943 -0.1675 0.1846 1001 10000
gamma[1] -0.6778 0.09568 0.005593 -0.8668 -0.6783 -0.4862 1001 10000
gammaf2] 0.03135 0.01019 1.396E-4 0.01139 0.03139 0.05137 1001 10000
gamma[3] 0.9597 0.08626 0.004849 0.7947 0.959 1.129 1001 10000
phi -0.002605 0.002829 3.159E-5 -0.008146 -0.00259 0.002927 1001 10000
theta 0.5801 0.03205 3.518E-4 0.5163 0.5803 0.6414 1001 10000

Estimating the ranks

The school-specific intercept aj1 measures the 'residual effect' for school j after adjusting for
pupil- and school-level covariates. This might represent an appropriate quantity by which to rank
schools' performance. We compute the ranks in BUGS using the "rank" option of the "Statistics"
menu, which we set for the variable alpha at the same time as we set the "sample monitor"
option. Since the rank is a function of stochastic nodes, its value will change at every iteration.
Hence we may obtain a posterior distribution for the rank of alphal, k] which may be summarized
by posterior histograms as shown below:

[28]
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BUGS Ice: non-parametric smoothing in an age-cohort
model

Breslow and Clayton (1993) analyse breast cancer rates in Iceland by year of birth (K =11
cohorts from 1840-1849 to 1940-1949) and by age (J =13 groups from 20-24 to 80-84 years).
Due to the number of empty cells we consider a single indexing over | = 77 observed number of
cases, giving data of the following form.

i age; year; cases; person-years;

1 1 6 2 41380
2 1 7 0 43650
77 13 5 31 13600

In order to pull in the extreme risks associated with small birth cohorts, Breslow and
Clayton first consider the exchangeable model

casesj ~ Poisson(u;)
log i = log person-years;+ aage; + Byear;
Bk ~ Normal(0, )

Autoregressive smoothing of relative risks

They then consider the alternative approach of smoothing the rates for the cohorts by assuming
an auto-regressive model on the B's, assuming the second differences are independent normal
variates. This is equivalent to a model and prior distribution

casesj ~ Poisson(;)

log i = log person-yearsj + aage; + Byear;

B1 ~ Normal(0,0.0000017)

B2|B1 ~ Normal(0,0.0000017)

Bk IB1,.. k-1 ~ Normal(2 Bk1-Pka,t) k>2

We note that B1 and B2 are given "non-informative" priors, but retain a t term in order to provide
the appropriate likelihood for 7.

For computational reasons Breslow and Clayton impose constraints on their random effects Bk
in order that their mean and linear trend are zero, and counter these constraints by introducing a
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linear term b x yearj and allowing unrestrained estimation of aj. Since we allow free movement
of the B's we dispense with the linear term, and impose a "corner" constraint o =0 .

model

{

}

for (iin1:1) {
cases|i] ~ dpois(muli])
log(mu[i]) <- log(pyr[i]) + alphalage]i]] + beta[year]i]]
}
betamean[1] <- 2 * beta[2] - beta[3]
Nneighs[1] <-1
betamean[2] <- (2 * beta[1] + 4 * beta[3] - beta[4]) /5
Nneighs[2] <-5
for(kin3:K-2) {
betamean[k] <- (4 *betalk - 1] + 4 * betalk + 1]- betalk - 2] - betalk + 2]) / 6
Nneighs[k] <-6
}
betamean[K - 1] <- (2 * beta[K] + 4 * beta[K - 2] - beta[K - 3]) /5
Nneighs[K - 1] <-5
betamean[K] <-2 *beta[K - 1] - betalK - 2]
Nneighs[K] <-1
for (kin 1 :K) {
betaprec[k] <- Nneighsl[k] * tau
}
for (kin1:K) {
beta[k] ~ dnorm(betameanlk], betaprec|k])
logRR[K]  <- beta[k] - beta[5]
tau.like[k] <- Nneighs[Kk] * betalk] * (betalk] - betamean[k])
}
alpha[1] <-0.0
for (jin 2 : Nage) {
alphalj] ~ dnorm(0, 1.0E-6)
}
d <- 0.0001 + sum(tau.like[]) / 2
r<-0.0001 +K/2
tau ~dgamma(r, d)
sigma <- 1/ sqrt(tau)

Data ( click to open )

Inits ( click to open)

Results

A 1000 update burn in followed by a further 100000 updates gave the parameter estimates
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logRR[1]
logRR[2]
logRR[3]
logRR[4]
logRR[6]
logRR[7]
logRR[8]
logRR[9]
logRR[10]
logRR[11]
sigma

mean
-1.075
-0.7717
-0.4721
-0.2016
0.1588
0.319
0.4829
0.6512
0.8466
1.059
0.05286

sd
0.2503
0.1584
0.08179
0.03908
0.04625
0.06949
0.08673
0.1066
0.1281
0.1811
0.04374

MC_error
0.008578
0.005506
0.002555
6.68E-4

0.001162
0.002112
0.002982
0.003936
0.00484

0.006206
0.001335

val2.5pc
-1.619
-1.107
-0.651
-0.278
0.04592
0.164
0.3022
0.4366
0.5911
0.7041

0.006732 0.04159

median
-1.043
-0.755
-0.463
-0.2018
0.1683
0.3282
0.4896
0.6566
0.8513
1.06

[31]

val97.5pc start

-0.6951
-0.5203
-0.338
-0.1166
0.2269
0.4369
0.6469
0.8613
1.094
1.415
0.1625

1001
1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

Examples Volume Il

sample
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
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BUGS Beetles: choice of link function

Dobson (1983) analyses binary dose-response data published by Bliss (1935), in which the
numbers of beetles killed after 5 hour exposure to carbon disulphide at N = 8 different
concentrations are recorded:

Concentration (x;)) | Number of beetles (n;) Number killed (r;)
1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 52
1.8610 62 61
1.8839 60 60

We assume that the observed number of deaths rj at each concentration x; is binomial with
sample size nj and true rate pj. Plausible models for pi include the logistic, probit and extreme
value (complimentary log-log) models, as follows

pi = exp(a + Bx) / (1 + exp(a + BX;)
pi = Phi(o + BX;)
pi=1-exp(-exp(a + Pxi))

The corresponding graph is shown below:
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for(i IN 1 : N)

model

{
for(iin1:N){

f{i] ~ dbin(p[i],n[i])
logit(p[i]) <- alpha.star + beta * (x[i] - mean(x]))
rhat[i] <- n[i] * p[i]

}

alpha <- alpha.star - beta * mean(x[])
beta ~ dnorm(0.0,0.001)
alpha.star ~ dnorm(0.0,0.001)

Data ( click to open )

Inits ( click to open)

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

Logit model
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mean sd MC_error val2.5pc median val97.5pc start sample
alpha -60.79 5.147 0.05624 -71.29 -60.67 -51.17 1001 10000
beta 34.31 2.893 0.03171 28.91 34.24 40.23 1001 10000
rhat[1] 3.56 0.9488 0.009435 1.997 3.463 5.634 1001 10000
rhat[2] 9.932 1.677 0.01549 6.909 9.851 13.43 1001 10000
rhat[3] 22.47 2.091 0.01736 18.36 22.46 26.63 1001 10000
rhat[4] 33.87 1.751 0.0152  30.32 33.89 37.25 1001 10000
rhat[5] 50.03 1.646 0.01661 46.66 50.06 53.12 1001 10000
rhat[6] 53.21 1.102 0.01191 50.86 53.28 55.17 1001 10000
rhat[7] 59.14 0.7338 0.008143 57.52 59.22 60.38 1001 10000
rhat[8] 58.68 0.4241 0.004761 57.72 58.74 59.36 1001 10000
Probit model

mean sd MC_error val2.5pc median val97.5pc start sample
alpha -35.04 2.646 0.02934 -40.46 -34.98 -29.93 1001 10000
beta 19.79 1.488 0.01657 16.9 19.75 22.84 1001 10000
rhat[1] 3.442 1.014 0.0106 1.743 3.348 5.693 1001 10000
rhat[2] 10.76 1.692 0.01684 7.632 10.7 14.23 1001 10000
rhat[3] 23.48 1.916 0.01865 19.79 23.47 27.24 1001 10000
rhat[4] 33.81 1.626 0.01706 30.58 33.83 36.96 1001 10000
rhat[5] 49.6 1.648 0.01865 46.27 49.63 52.73 1001 10000
rhat[6] 53.27 1.17 0.01353 50.76 53.33 55.38 1001 10000
rhat[7] 59.6 0.7542 0.008725 57.88 59.67 60.84 1001 10000
rhat[8] 59.17 0.3729 0.004308 58.28 59.23 59.72 1001 10000

Extreme value (cloglog) model

mean sd MC_error val2.5pc median val97.5pc start sample
alpha -39.77 3.221 0.02839 -46.41 -39.68 -33.74 1001 10000
beta 22.15 1.788 0.01573 18.81 221 25.85 1001 10000
rhat[1] 5.623 1.119 0.01006 3.63 5.551 8.055 1001 10000
rhat[2] 11.28 1.581 0.01461 8.351 11.21 14.52 1001 10000
rhat[3] 20.91 1.891 0.0183 17.29 20.89 24.66 1001 10000
rhat[4] 30.32 1.666 0.01688 26.98 30.33 33.56 1001 10000
rhat[5] 47.74 1.74 0.01713 44.21 47.77 51.01 1001 10000
rhat[6] 54.08 1.231 0.01134 51.48 54.15 56.25 1001 10000
rhat[7] 61.02 0.5304  0.004795 59.75 61.12 61.77 1001 10000
rhat[8] 59.92 0.09563 9.349E-4 59.66 59.95 60.0 1001 10000
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W ,

BUGS Endo: conditional inference in case-control studies

Breslow and Day (1980) analyse a set of data from a case-control study relating endometrial
cancer with exposure to estrogens. 183 pairs of cases and controls were studied, and the full
data is shown below.

Status of control
Status of case | Not exposed Exposed

Not exposed n00 =121 not= 7
Exposed n10 = 43 nit=12

We denote estrogen exposure as Xij for the ith case-control pair, where j=1 for a case and j=2 for
a control. The conditional likelihood for the log (odds ratio) B is then given by IT; exp Bxi1 / (exp

Bxi1 + exp Pxi2)

We shall illustrate three methods of fitting this model. Itis convenient to denote the fixed disease
status as a variable Yj;1 =1, Yj2 = 0.

First, Breslow and Day point out that for case-control studies with a single control per case, we
may obtain this likelihood by using unconditional logistic regression for each case-control pair.
That is

Yii1 ~ Binomial(p;,2)
logitpi = B (xi1 —Xi2)

Second, the Classic BUGS manual (version 0.5) section on Conditional likelihoods in case-
control studies discusses fitting this likelihood directly by assuming the model

Yi. ~ Multinomial(pj, 1)
Pij = &ij/Zej
log ej = B xj

Finally, the Classic BUGS manual (version 0.5) shows how the multinomial-Poisson
transformation can be used. In general, this will be more efficient than using the multinomial-
logistic parameterisation above, since it avoids the time-consuming evaluation of %j ej;. However,
in the present example this summation is only over J=2 elements, whilst the multinomial-Poisson
parameterisation involves estimation of an additional intercept parameter for each of the 183
strata. Consequently the latter is /ess efficient than the multinomial-logistic in this case.

[35]



Examples Volume I Endo

We note that all these formulations may be easily extended to include additional subject-specific
covariates, and that the second and third methods can handle arbitrary numbers of controls per
case. Inaddition, the Bayesian approach allows the incorporation of hierarchical structure,
measurement error, missing data and so on.

All these techniques are illustrated in the code given below, which includes a transformation of
the original summary statistics into full data. In this example, all but the second conditional-
likelihood approach are commented out.

model
{
# transform collapsed data into full
for (iin 1 :1){
Y[i,1] <- 1
Y[i,2] <- 0
}
# loop around strata with case exposed, control not exposed (n10)
for (iin 1 :n10){
est[i,1] <- 1
est[i,2] <-0
}
# loop around strata with case not exposed, control exposed (n01)
for (iin (N10+1) : (N10+n01)){
estfi,1]<-0
est[i,2] <- 1
}
# loop around strata with case exposed, control exposed (n11)
for (iin (N10+n01+1) : (N10+n01+n11)){
est[i,1] <- 1
est[i,2] <- 1
}
# loop around strata with case not exposed, control not exposed (n00)
for (iin (N10+n01+n11+1) I ){
est[i,1] <-0
est[i,2] <- 0
}

# PRIORS
beta ~ dnorm(0,1.0E-6) ;

# LIKELIHOOD
for (iin1:1){ # loop around strata
# METHOD 1 - logistic regression
# Y[i,1] ~ dbin( pl[i,1], 1)
# logit(pl[i,1]) <- beta * (est[i,1] - est]i,J])
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# METHOD 2 - conditional likelihoods
Y[i, 1 :J] ~ dmulti( p[i, 1 : J],1)
for (jin 1:2){
pli, ] <- efi, j]/ sum(efi, ])
log( €[, j] ) <- beta * est]i, ||

# METHOD 3 fit standard Poisson regressions relative to baseline
#for (jin 1:J) {
# Y[, ] ~ dpois(muli, j]);
# log(muli, j]) <- betaO[i] + beta*est]i, j];
}
#betaO[i] ~ dnorm(0, 1.0E-6)
}

Data ( cklick to open )

Inits ( cklick to open )

Results

A 5000 update burn in followed by a further 10000 updates gave the parameter estimates

mean sd MC_error val2.5pc median val97.5pc start sample
beta 1.871 0.4123  0.009414 1.111 1.844 2.761 5001 10000
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BUGS Stagnant: a changepoint problem
(and an illustration of how NOT to do MCMC!)

Carlin, Gelfand and Smith (1992) analyse data from Bacon and Watts (1971) concerning a
changepoint in a linear regression.

i Xi Yi i Xj Y;i i Xi Y;i

1 -139 112 11 -0.12 0.60 21 044 0.13
2 -139 1.12 12 -0.12 0.59 22 0.59 -0.01

3 -1.08 0.99 13 0.01 0.51 23 0.70 -0.13
4 -1.08 1.03 14 011 0.44 24 0.70 0.14
5 -094 0.92 15 0.11 043 25 0.85 -0.30
6 -0.80 0.90 16 0.11 043 26 0.85 -0.33
7 -0.63 0.81 17 025 0.33 27 0.99 -046
8 -0.63 0.83 18 025 0.30 28 0.99 -043
9 -025 0.65 19 034 0.25 29 119 -0.65
10 -0.25 0.67 20 034 0.24

Note the repeated x's.

We assume a model with two straight lines that meet at a certain changepoint xk --- this is slightly

different from the model of Carlin, Gelfand and Smith (1992) who do not constrain the two
straight lines to cross at the changepoint. We assume

Yi ~ Normal(ui, t)
W o= o+BJxi-xk) Jil=1if i<=k Jfi]=2 if i>k

giving E(Y) = a at the changepoint, with gradient B{ before, and gradient B2 after the
changepoint. We give independent "noninformative" priors to a, 1, f2 and t.

Note: alpha is E(Y) at the changepoint, so will be highly correlated with k. This may be a
very poor parameterisation.

Note way of constructing a uniform prior on the integer k, and making the regression
parameter depend on a random changepoint.

model

{
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for(iin1:N){
Y[i] ~ dnorm(mul[i],tau)
mul[i] <- alpha + beta[J[i]] * (X[i] - x[k])
J[i] <- 1 + step(i - k- 0.5)
puniffi] <- 1/N
}
tau ~ dgamma(0.001,0.001)
alpha ~ dnorm(0.0,1.0E-6)
for(jin1:2){

betalj] ~ dnorm(0.0,1.0E-6)
}
k ~ dcat(punif])
sigma <- 1/ sgrt(tau)

}

Data  (click to open)

Inits for chain 1 Inits for chain 2(click to open)

Traces of two chains shows complete dependence on starting values

alpha
1.2
0.8
0.6
b " r e
0.4
T T T T
0 2500 5000 7500
iteration
k
20.01
15.0F NN K A AONO v N R
10.0f
O T O o S e Tl
5.0

T T T
0 2500 5000 7500
iteration

Results are hopeless - no mixing at all.

Note: alpha is E(Y) at the changepoint, so will be highly correlated with k. This may be a
very poor parameterisation.

TRY USING CONTINUOUS PARAMETERISATION
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model
{
for(iin 1 :N){
Y[i] ~ dnorm(mul[i], tau)
mul[i] <- alpha + beta[J[i]] * (x[i] - x.change)
J[i] <- 1 + step(x[i] - x.change)

tau ~ dgamma(0.001, 0.001)
alpha ~ dnorm(0.0,1.0E-6)

for(jin1:2){
beta[j] ~ dnorm(0.0,1.0E-6)
}

sigma <- 1/ sgrt(tau)
x.change ~ dunif(-1.3,1.1)

}
Data  (click to open)
Inits for chain 1 Inits for chain 2( click to open )
Results
alpha
0.8
0.6
0.4
0.2f
0.0
6 25IOO 50IOO 75IOO
iteration
x.change
1.0
0.5F
0.0f
-0.51
6 25IOO 50IOO 75IOO
iteration

[40]
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alpha
beta[1]
beta[2]
sigma
x.change

mean sd

MC_error

0.537 0.02569 0.001316
-0.4184 0.01511 6.303E-4
-1.014 0.01747 5.38E-4

0.0221 0.003271 3.919E-5
0.02597 0.03245 0.001668

val2.5pc median
0.4895 0.535
-0.4468 -0.419
-1.049 -1.013
0.0168  0.02171
-0.03754 0.02868

Not wonderful mixing, but reasonable

val97.5pc start

0.5881 1001
-0.3876 1001
-0.9799 1001
0.02952 1001
0.0839 1001

Examples Volume Il

sample
20000
20000
20000
20000
20000

Good fit to data , (monitor mu and use as predicted values) use 'model fit' in Compare

tool

Strong correlation of alpha and changepoint

alpha

x.change

-0.932941
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ki ,

BUGS Asia: expert system

Evidence propagation

Lauritzen and Spiegelhalter (1988) introduce a fictitious "expert system" representing the
diagnosis of a patient presenting to a chest clinic, having just come back from a trip to Asia and
showing dyspnoea (shortness-of-breath). The BUGS code is shown below and the conditional
probabilities used are given in Lauritzen and Spiegelhalter (1988). Note the use of max to do
the logical-or. The dcat distribution is used to sample values with domain (1,2) with probability
distribution given by the relevant entries in the conditional probability

tables.

model
{
smoking ~ dcat(p.smoking[1:2])
tuberculosis ~ dcat(p.tuberculosis[asia,1:2])
lung.cancer ~ dcat(p.lung.cancer[smoking,1:2])
bronchitis ~ dcat(p.bronchitis[smoking,1:2])
either <- max(tuberculosis,lung.cancer)
xray ~ dcat(p.xray[either,1:2))
dyspnoea ~ dcat(p.dyspnoealeither,bronchitis,1:2])

Data ( click to open )

Inits ( click to open)

Results

mean sd MC_error val2.5pc median val97.5pc start sample
bronchitis  1.811 0.3918  0.001409 1.0 2.0 2.0 10001 100000
either 1.185 0.3885 0.001287 1.0 1.0 2.0 10001 100000
lung.cancer 1.101 0.3011 0.001006 1.0 1.0 2.0 10001 100000
smoking 1.628 0.4833 0.001764 1.0 2.0 2.0 10001 100000
tuberculosis 1.089 0.2854  9.782E-4 1.0 1.0 2.0 10001 100000
xray 1.223 0.4161 0.00135 1.0 1.0 2.0 10001 100000
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