Summary
Selected Papers
Samartsidis P, Seaman SR, Harrison A, Alexopoulos A, Hughes GJ, Rawlinson C, Anderson C, Charlett A, Oliver I and De Angelis D. (2024). A Bayesian multivariate factor analysis model for causal inference using time-series observational data on mixed outcomes. Biostatistics 25: 867-884
Seaman SR, Samartsidis P, Kall M and De Angelis D. (2022) Nowcasting COVID-19 deaths in England by age and region. Journal of the Royal Statistical Society Series C (Applied Statistics) 71: 1266-1281
Farewell D, Daniel R and Seaman S. (2022) Missing at random: a stochastic process perspective. Biometrika 109: 227-241
Seaman S, Dukes O, Keogh R and Vansteelandt S. (2020) Adjusting for time-varying confounders in survival analysis using structural nested cumulative survival time models. Biometrics 76: 472-483
Wen L. and Seaman S.R. (2018) Semi-parametric methods of handling missing data in mortal cohorts under non-ignorable missingness. Biometrics 74: 1427-1437
Seaman S.R. and Vansteelandt S. (2018) Introduction to double robust methods for incomplete data. Statistical Science 33: 184-197
S.R. Seaman and R.H. Hughes (2018) Relative efficiency of joint-model and full-conditional-specification multiple imputation when conditional models are compatible: The general location model. Statistical Methods in Medical Research 27: 1603-1614
S.R. Seaman, R.H. Keogh (2015) Handling missing data in matched case-control studies using multiple imputation. Biometrics 71: 1150-1159
S.R. Seaman, M. Pavlou, A.J. Copas. (2014) Methods for Observed-Cluster Inference when Cluster Size is Informative: a Review and Clarifications. Biometrics 70: 449-456
S.R. Seaman, J. Galati, D. Jackson, J. Carlin. (2013) What is Meant by "Missing at Random"? Statistical Science 28: 257-268